login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,0,1,0,1,1,0,3,2,1
Displaying 1-10 of 15 results found. page 1 2
     Sort: relevance | references | number | modified | created      Format: long | short | data
A098825 Triangle read by rows: T(n,k) = number of partial derangements, that is, the number of permutations of n distinct, ordered items in which exactly k of the items are in their natural ordered positions, for n >= 0, k = n, n-1, ..., 1, 0. +30
37
1, 1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 6, 8, 9, 1, 0, 10, 20, 45, 44, 1, 0, 15, 40, 135, 264, 265, 1, 0, 21, 70, 315, 924, 1855, 1854, 1, 0, 28, 112, 630, 2464, 7420, 14832, 14833, 1, 0, 36, 168, 1134, 5544, 22260, 66744, 133497, 133496, 1, 0, 45, 240, 1890, 11088, 55650, 222480, 667485, 1334960, 1334961 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
In other words, T(n,k) is the number of permutations of n letters that are at Hammimg distance k from the identity permutation (cf. Diaconis, p. 112). - N. J. A. Sloane, Mar 02 2007
The sequence d(n) = 1, 0, 1, 2, 9, 44, 265, 1854, 14833, ... (A000166) is the number of derangements, that is, the number of permutations of n distinct, ordered items in which none of the items is in its natural ordered position.
LINKS
P. Diaconis, Group Representations in Probability and Statistics, IMS, 1988; see p. 112.
Chris D. H. Evans, John Hughes and Julia Houston, Significance-testing the validity of idiographic methods: A little derangement goes a long way, British Journal of Mathematical and Statistical Psychology, 1 November 2002, Vol. 55, pp. 385-390.
Eric Weisstein's World of Mathematics, Partial Derangement
FORMULA
T(0, 0) = 1; d(0) = T(0, 0); for k = n, n-1, ..., 1, T(n, k) = c(n, k) d(n-k) where c(n, k) = n! / [(k!) (n-k)! ]; T(n, 0) = n! - [ T(n, n) + T(n, n-1) + ... + T(n, 1) ]; d(n) = T(n, 0).
T(n,k) = A008290(n,n-k). - Vladeta Jovovic, Sep 04 2006
Assuming a uniform distribution on S_n, the mean Hamming distance is n-1 and the variance is 1 (Diaconis, p. 117). - N. J. A. Sloane, Mar 02 2007
From Manfred Boergens, Oct 25 2022: (Start)
T(n, k) = (n!/(n-k)!)*Sum_{j=0..k} (-1)^j/j!.
T(n,0)=1; T(n, k) = C(n, k)*round(k!/e) = C(n,k)*A000166(k) = C(n, k)*floor(k!/e + 1/2) for k > 0. (End)
EXAMPLE
Assume d(0), d(1), d(2) are given. Then
T(3, 3) = c(3, 3)*d(0) = (1)*(1) = 1;
T(3, 2) = c(3, 2)*d(1) = (3)*(0) = 0;
T(3, 1) = c(3, 1)*d(2) = (3)*(1) = 3;
T(3, 0) = 3! - (1 + 0 + 3) = 6 - 4 = 2.
d(3) = T(3, 0).
Triangle begins:
1;
1, 0;
1, 0, 1;
1, 0, 3, 2;
1, 0, 6, 8, 9;
1, 0, 10, 20, 45, 44;
1, 0, 15, 40, 135, 264, 265;
1, 0, 21, 70, 315, 924, 1855, 1854;
...
MATHEMATICA
t[0, 0] = 1; t[n_, k_] := Binomial[n, k]*k!*Sum[(-1)^j/j!, {j, 0, k}]; Flatten[ Table[ t[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Nov 04 2004 *)
T[n_, k_] := Binomial[n, n-k] Subfactorial[k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 01 2021 *)
(* Sum-free code *)
T[n_, k_] = If[k==0, 1, Binomial[n, k] Round[k!/E]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Manfred Boergens, Oct 25 2022 *)
PROG
(Haskell)
a098825 n k = a098825_tabl !! n !! k
a098825_row n = a098825_tabl !! n
a098825_tabl = map (zipWith (*) a000166_list) a007318_tabl
-- Reinhard Zumkeller, Dec 16 2013
CROSSREFS
Mirror of triangle A008290.
T(2n,n) gives A281262.
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Nov 04 2004
STATUS
approved
A084269 Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes having chromatic number k, 1 <= k <= n. +30
10
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 5, 12, 3, 1, 0, 17, 64, 26, 4, 1, 0, 44, 475, 282, 46, 5, 1, 0, 182, 5036, 5009, 809, 74, 6, 1, 0, 730, 80947, 149551, 27794, 1940, 110, 7, 1, 0, 4032, 2010328, 7694428, 1890221, 113272, 4125, 156, 8, 1, 0, 25598, 76115143, 667036310, 248580644, 14545025, 389583, 8040, 212, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
LINKS
Eric Weisstein's World of Mathematics, n-Chromatic Graph
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 5, 12, 3, 1;
0, 17, 64, 26, 4, 1;
0, 44, 475, 282, 46, 5, 1;
0, 182, 5036, 5009, 809, 74, 6, 1;
0, 730, 80947, 149551, 27794, 1940, 110, 7, 1;
...
CROSSREFS
Row sums are A001349.
Columns k=3..7 are A126737, A126738, A126739, A126740, A241702.
Partial row sums include A005142, A076322, A076323, A076324, A076325, A076326, A076327, A076328.
Essentially the same table as A126736.
Cf. A084268 (not necessarily connected), A115597.
KEYWORD
nonn,tabl
AUTHOR
Eric W. Weisstein, May 24 2003
EXTENSIONS
a(37)-a(66) from Andrew Howroyd, Dec 02 2018
STATUS
approved
A113081 Square table T, read by antidiagonals, where T(n,k) gives the number of n-th generation descendents of a node labeled (k), in the tree of 3-tournament sequences, for n>=1. +30
10
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 21, 10, 3, 1, 0, 331, 114, 21, 4, 1, 0, 11973, 2970, 331, 36, 5, 1, 0, 1030091, 182402, 11973, 724, 55, 6, 1, 0, 218626341, 27392682, 1030091, 33476, 1345, 78, 7, 1, 0, 118038692523, 10390564242, 218626341, 3697844, 75695, 2246 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
A 3-tournament sequence is an increasing sequence of positive integers (t_1,t_2,...) such that t_1 = p, t_i = p (mod 2) and t_{i+1} <= 3*t_i, where p>=1. This is the table of 3-tournament sequences when the starting node has label p = k for column k>=1.
LINKS
M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
FORMULA
For n>=k>0: T(n, k) = Sum_{j=1..k} T(n-1, k+2*j); else for k>n>0: T(n, k) = Sum_{j=1..n+1}(-1)^(j-1)*C(n+1, j)*T(n, k-j); with T(0, k)=1 for k>=0. Column k of T equals column 0 of the matrix k-th power of triangle A113084, which satisfies the matrix recurrence: A113084(n, k) = [A113084^3](n-1, k-1) + [A113084^3](n-1, k) for n>k>=0.
EXAMPLE
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,...
0,1,2,3,4,5,6,7,8,9,10,11,...
0,3,10,21,36,55,78,105,136,171,210,...
0,21,114,331,724,1345,2246,3479,5096,7149,...
0,331,2970,11973,33476,75695,148926,265545,440008,...
0,11973,182402,1030091,3697844,10204145,23694838,...
0,1030091,27392682,218626341,1011973796,3416461455,...
0,218626341,10390564242,118038692523,706848765844,...
0,118038692523,10210795262650,166013096151621,...
PROG
(PARI) /* Generalized Cook-Kleber Recurrence */ T(n, k, q=3)=if(n==0, 1, if(n<0 || k<=0, 0, if(n==1, k, if(n>=k, sum(j=1, k, T(n-1, k+(q-1)*j)), sum(j=1, n+1, (-1)^(j-1)*binomial(n+1, j)*T(n, k-j))))))
(PARI) /* Matrix Power Recurrence (Paul D. Hanna) */ T(n, k, q=3)=local(M=matrix(n+1, n+1)); for(r=1, n+1, for(c=1, r, M[r, c]=if(r==c, 1, if(c>1, (M^q)[r-1, c-1])+(M^q)[r-1, c]))); return((M^k)[n+1, 1])
CROSSREFS
Cf. A113084, A113085 (column 1), A113089 (column 2); tables: A093729 (2-tournaments), A113092 (4-tournaments), A113103 (5-tournaments).
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 14 2005
STATUS
approved
A253286 Square array read by upward antidiagonals, A(n,k) = Sum_{j=0..n} (n-j)!*C(n,n-j)* C(n-1,n-j)*k^j, for n>=0 and k>=0. +30
7
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 8, 3, 1, 0, 73, 44, 15, 4, 1, 0, 501, 304, 99, 24, 5, 1, 0, 4051, 2512, 801, 184, 35, 6, 1, 0, 37633, 24064, 7623, 1696, 305, 48, 7, 1, 0, 394353, 261536, 83079, 18144, 3145, 468, 63, 8, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
LINKS
FORMULA
A(n,k) = k*n!*hypergeom([1-n],[2],-k)) for n>=1 and 1 for n=0.
Row sums of triangle, Sum_{k=0..n} A(n-k, k) = 1 + A256325(n).
From Seiichi Manyama, Feb 03 2021: (Start)
E.g.f. of column k: exp(k*x/(1-x)).
T(n,k) = (2*n+k-2) * T(n-1,k) - (n-1) * (n-2) * T(n-2, k) for n > 1. (End)
From G. C. Greubel, Feb 23 2021: (Start)
A(n, k) = k*(n-1)!*LaguerreL(n-1, 1, -k) with A(0, k) = 1.
T(n, k) = k*(n-k-1)!*LaguerreL(n-k-1, 1, -k) with T(n, n) = 1.
T(n, 2) = A052897(n) = A086915(n)/2.
Sum_{k=0..n} T(n, k) = 1 + Sum_{k=0..n-1} (n-k-1)*k!*LaguerreL(k, 1, k-n+1). (End)
EXAMPLE
Square array starts, A(n,k):
1, 1, 1, 1, 1, 1, 1, ... A000012
0, 1, 2, 3, 4, 5, 6, ... A001477
0, 3, 8, 15, 24, 35, 48, ... A005563
0, 13, 44, 99, 184, 305, 468, ... A226514
0, 73, 304, 801, 1696, 3145, 5328, ...
0, 501, 2512, 7623, 18144, 37225, 68976, ...
0, 4051, 24064, 83079, 220096, 495475, 997056, ...
Triangle starts, T(n, k) = A(n-k, k):
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 13, 8, 3, 1;
0, 73, 44, 15, 4, 1;
0, 501, 304, 99, 24, 5, 1;
MAPLE
L := (n, k) -> (n-k)!*binomial(n, n-k)*binomial(n-1, n-k):
A := (n, k) -> add(L(n, j)*k^j, j=0..n):
# Alternatively:
# A := (n, k) -> `if`(n=0, 1, simplify(k*n!*hypergeom([1-n], [2], -k))):
for n from 0 to 6 do lprint(seq(A(n, k), k=0..6)) od;
MATHEMATICA
A253286[n_, k_]:= If[k==n, 1, k*(n-k-1)!*LaguerreL[n-k-1, 1, -k]];
Table[A253286[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 23 2021 *)
PROG
(PARI) {T(n, k) = if(n==0, 1, n!*sum(j=1, n, k^j*binomial(n-1, j-1)/j!))} \\ Seiichi Manyama, Feb 03 2021
(PARI) {T(n, k) = if(n<2, (k-1)*n+1, (2*n+k-2)*T(n-1, k)-(n-1)*(n-2)*T(n-2, k))} \\ Seiichi Manyama, Feb 03 2021
(Sage) flatten([[1 if k==n else k*factorial(n-k-1)*gen_laguerre(n-k-1, 1, -k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 23 2021
(Magma) [k eq n select 1 else k*Factorial(n-k-1)*Evaluate(LaguerrePolynomial(n-k-1, 1), -k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 23 2021
CROSSREFS
Main diagonal gives A293145.
KEYWORD
tabl,easy,nonn
AUTHOR
Peter Luschny, Mar 24 2015
STATUS
approved
A184182 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} whose longest block is of length k (0<=k<=n). A block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions. For example, the permutation 5412367 has 4 blocks: 5, 4, 123, and 67. Its longest block has length 3. +30
6
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 11, 10, 2, 1, 0, 53, 53, 11, 2, 1, 0, 309, 334, 63, 11, 2, 1, 0, 2119, 2428, 415, 64, 11, 2, 1, 0, 16687, 20009, 3121, 425, 64, 11, 2, 1, 0, 148329, 184440, 26402, 3205, 426, 64, 11, 2, 1, 0, 1468457, 1881050, 248429, 27145, 3215, 426, 64, 11, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Sum of entries in row n is n!.
T(n,1) = A000255(n-1) for n>=1.
LINKS
FORMULA
T(n,k) = Sum_{m=1..n} (b(n,m,k)-b(n,m,k-1))*(d(m)+d(m-1)), where b(n,m,k) = coefficient of t^n in (t+t^2+...+t^k)^m and d(j) = A000166(j) are the derangement numbers.
EXAMPLE
T(3,1) = 3 because we have 132, 213, and 321.
T(4,3) = 2 because we have 4123 and 2341.
Triangle starts:
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 11, 10, 2, 1;
0, 53, 53, 11, 2, 1;
0, 309, 334, 63, 11, 2, 1;
...
MAPLE
d[-1]:= 0: d[0] := 1: for n to 40 do d[n] := n*d[n-1]+(-1)^n end do: b := proc (n, m, k) options operator, arrow: coeff(add(t^j, j = 1 .. k)^m, t, n) end proc: T := proc (n, k) options operator, arrow: add(b(n, m, k)*(d[m]+d[m-1]), m = 0 .. n)-add(b(n, m, k-1)*(d[m]+d[m-1]), m = 1 .. n) end proc: for n from 0 to 11 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
CROSSREFS
Columns k=0..3 give A000007, A000255(n-1), A370390, A370392.
Row sums are A000142.
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 13 2011
EXTENSIONS
Row n=0 and column k=0 added by Alois P. Heinz, Feb 17 2024
STATUS
approved
A370419 A(n, k) = 2^n*Pochhammer(k/2, n). Square array read by ascending antidiagonals. +30
6
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 8, 3, 1, 0, 105, 48, 15, 4, 1, 0, 945, 384, 105, 24, 5, 1, 0, 10395, 3840, 945, 192, 35, 6, 1, 0, 135135, 46080, 10395, 1920, 315, 48, 7, 1, 0, 2027025, 645120, 135135, 23040, 3465, 480, 63, 8, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11324 (first 150 antidiagonals, flattened).
FORMULA
The polynomials P(n, x) = Sum_{k=0..n} Stirling1(n, k)*(-2)^(n-k)*x^k are ordinary generating functions for row n, i.e., A(n, k) = P(n, k).
From Werner Schulte, Mar 06 and 07 2024: (Start)
A(n, k) = Product_{i=1..n} (2*i - 2 + k).
E.g.f. of column k: Sum_{n>=0} A(n, k) * t^n / (n!) = (1/sqrt(1 - 2*t))^k.
A(n, k) = A(n+1, k-2) / (k - 2) for k > 2.
A(n, k) = Sum_{i=0..k-1} i! * A265649(n, i) * binomial(k-1, i) for k > 0.
E.g.f. of row n > 0: Sum_{k>=1} A(n, k) * x^k / (k!) = (Sum_{k=1..n} A035342(n, k) * x^k) * exp(x).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (k! * n!) = exp(x/sqrt(1 - 2*t)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (n!) = 1 / (1 - x/sqrt(1 - 2*t)).
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(n, k) = A035342(n, k) * k! for 1 <= k <= n and L(n, 0) = 0^n. Note that L(n, k) + L(n, k+1) = A265649(n, k) * k! for 0 <= k <= n. (End)
EXAMPLE
The array starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 3, 8, 15, 24, 35, 48, 63, 80, ...
[3] 0, 15, 48, 105, 192, 315, 480, 693, 960, ...
[4] 0, 105, 384, 945, 1920, 3465, 5760, 9009, 13440, ...
[5] 0, 945, 3840, 10395, 23040, 45045, 80640, 135135, 215040, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 3, 2, 1;
[4] 0, 15, 8, 3, 1;
[5] 0, 105, 48, 15, 4, 1;
[6] 0, 945, 384, 105, 24, 5, 1;
.
From Werner Schulte, Mar 07 2024: (Start)
Illustrating the LU decomposition of A:
/ 1 \ / 1 1 1 1 1 ... \ / 1 1 1 1 1 ... \
| 0 1 | | 1 2 3 4 ... | | 0 1 2 3 4 ... |
| 0 3 2 | * | 1 3 6 ... | = | 0 3 8 15 24 ... |
| 0 15 18 6 | | 1 4 ... | | 0 15 48 105 192 ... |
| 0 105 174 108 24 | | 1 ... | | 0 105 384 945 1920 ... |
| . . . | | . . . | | . . . |. (End)
MAPLE
A := (n, k) -> 2^n*pochhammer(k/2, n):
for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
# Using the exponential generating functions of the columns:
EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 2*x)^(-k/2);
ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
seq(lprint(EGFcol(n, 9)), n = 0..8);
# Using the generating polynomials for the rows:
P := (n, x) -> local k; add(Stirling1(n, k)*(-2)^(n - k)*x^k, k=0..n):
seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
# Implementing the comment of Werner Schulte about the LU decomposition of A:
with(LinearAlgebra):
L := Matrix(7, 7, (n, k) -> A371025(n - 1, k - 1)):
U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
MatrixMatrixMultiply(L, Transpose(U)); # Peter Luschny, Mar 08 2024
MATHEMATICA
A370419[n_, k_] := 2^n*Pochhammer[k/2, n];
Table[A370419[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 06 2024 *)
PROG
(SageMath)
def A(n, k): return 2**n * rising_factorial(k/2, n)
for n in range(6): print([A(n, k) for k in range(9)])
CROSSREFS
Cf. A035342, A265649, A370890, A370982 (row sums of the triangle), A370915, A371025, A371077.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 04 2024
STATUS
approved
A085771 Triangle read by rows. T(n, k) = A059438(n, k) for 1 <= k <= n, and T(n, 0) = n^0. +30
5
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 7, 3, 1, 0, 71, 32, 12, 4, 1, 0, 461, 177, 58, 18, 5, 1, 0, 3447, 1142, 327, 92, 25, 6, 1, 0, 29093, 8411, 2109, 531, 135, 33, 7, 1, 0, 273343, 69692, 15366, 3440, 800, 188, 42, 8, 1, 0, 2829325, 642581, 125316, 24892, 5226, 1146, 252, 52, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
The convolution triangle of A003319, the number of irreducible permutations. - Peter Luschny, Oct 09 2022
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 262 (#14).
LINKS
FindStat - Combinatorial Statistic Finder, The decomposition number of a permutation.
FORMULA
Let f(x) = Sum_{n>=0} n!*x^n, g(x) = 1 - 1/f(x). Then g(x) is the g.f. of the second column, A003319.
Triangle T(n, k) read by rows, given by [0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA A000007, where DELTA is Deléham's operator defined in A084938.
G.f.: 1/(1 - xy/(1 - x/(1 - 2x/(1 - 2x/(1 - 3x/(1 - 3x/(1 - 4x/(1-.... (continued fraction). - Paul Barry, Jan 29 2009
EXAMPLE
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 1, 1]
[3] [0, 3, 2, 1]
[4] [0, 13, 7, 3, 1]
[5] [0, 71, 32, 12, 4, 1]
[6] [0, 461, 177, 58, 18, 5, 1]
[7] [0, 3447, 1142, 327, 92, 25, 6, 1]
[8] [0, 29093, 8411, 2109, 531, 135, 33, 7, 1]
[9] [0, 273343, 69692, 15366, 3440, 800, 188, 42, 8, 1]
MAPLE
# Uses function PMatrix from A357368.
PMatrix(10, A003319); # Peter Luschny, Oct 09 2022
PROG
(SageMath) # Using function delehamdelta from A084938.
def A085771_triangle(n) :
a = [0, 1] + [(i + 3) // 2 for i in range(1, n-1)]
b = [0^i for i in range(n)]
return delehamdelta(a, b)
A085771_triangle(9) # Peter Luschny, Sep 10 2022
CROSSREFS
T(2*n, n) = A308650(n).
Variants: A059439, A263484 (row reversed).
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Jul 22 2003
STATUS
approved
A344499 T(n, k) = F(n - k, k), where F(n, x) is the Fubini polynomial. Triangle read by rows, T(n, k) for 0 <= k <= n. +30
5
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 10, 3, 1, 0, 75, 74, 21, 4, 1, 0, 541, 730, 219, 36, 5, 1, 0, 4683, 9002, 3045, 484, 55, 6, 1, 0, 47293, 133210, 52923, 8676, 905, 78, 7, 1, 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1, 0, 7087261, 45375130, 26857659, 5227236, 544505, 39390, 2359, 136, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
The array rows are recursively generated by applying the Akiyama-Tanigawa algorithm to the powers (see the Python implementation below). In this way the array becomes the image of A004248 under the AT-transformation when applied to the columns of A004248. This makes the array closely linked to A371761, which is generated in the same way, but applied to the rows of A004248. - Peter Luschny, Apr 27 2024
LINKS
FORMULA
T(n, k) = (n - k)! * [x^(n - k)] (1 / (1 + k * (1 - exp(x)))).
T(2*n, n) = A094420(n).
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 3, 2, 1;
[4] 0, 13, 10, 3, 1;
[5] 0, 75, 74, 21, 4, 1;
[6] 0, 541, 730, 219, 36, 5, 1;
[7] 0, 4683, 9002, 3045, 484, 55, 6, 1;
[8] 0, 47293, 133210, 52923, 8676, 905, 78, 7, 1;
[9] 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1;
.
Seen as an array A(n, k) = T(n + k, n):
[0] [1, 0, 0, 0, 0, 0, 0, ... A000007
[1] [1, 1, 3, 13, 75, 541, 4683, ... A000670
[2] [1, 2, 10, 74, 730, 9002, 133210, ... A004123
[3] [1, 3, 21, 219, 3045, 52923, 1103781, ... A032033
[4] [1, 4, 36, 484, 8676, 194404, 5227236, ... A094417
[5] [1, 5, 55, 905, 19855, 544505, 17919055, ... A094418
[6] [1, 6, 78, 1518, 39390, 1277646, 49729758, ... A094419
[7] [1, 7, 105, 2359, 70665, 2646007, 118893705, ... A238464
MAPLE
F := proc(n) option remember; if n = 0 then return 1 fi:
expand(add(binomial(n, k)*F(n - k)*x, k = 1..n)) end:
seq(seq(subs(x = k, F(n - k)), k = 0..n), n = 0..10);
MATHEMATICA
F[n_] := F[n] = If[n == 0, 1,
Expand[Sum[Binomial[n, k]*F[n - k]*x, {k, 1, n}]]];
Table[Table[F[n - k] /. x -> k, {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jun 06 2024, after Peter Luschny *)
PROG
(SageMath) # Computes the triangle.
@cached_function
def F(n):
R.<x> = PolynomialRing(ZZ)
if n == 0: return R(1)
return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
def Fval(n): return [F(n - k).substitute(x = k) for k in (0..n)]
for n in range(10): print(Fval(n))
(SageMath) # Computes the square array using the Akiyama-Tanigawa algorithm.
def ATFubini(n, len):
A = [0] * len
R = [0] * len
for k in range(len):
R[k] = (n + 1)**k # Chancing this to R[k] = k**n generates A371761.
for j in range(k, 0, -1):
R[j - 1] = j * (R[j] - R[j - 1])
A[k] = R[0]
return A
for n in range(8): print([n], ATFubini(n, 7)) # Peter Luschny, Apr 27 2024
CROSSREFS
Variant of the array is A094416 (which has column 0 and row 0 missing).
The coefficients of the Fubini polynomials are A131689.
Cf. A094420 (main diagonal of array), A372346 (row sums), A004248, A371761.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 21 2021
STATUS
approved
A111106 Riordan array (1, x*g(x)) where g(x) is g.f. of double factorials A001147. +30
4
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 7, 3, 1, 0, 105, 36, 12, 4, 1, 0, 945, 249, 64, 18, 5, 1, 0, 10395, 2190, 441, 100, 25, 6, 1, 0, 135135, 23535, 3807, 691, 145, 33, 7, 1, 0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Triangle T(n,k), 0 <= k <= n, given by [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
LINKS
FORMULA
T(n, k) = Sum_{j=0..n-k} T(n-1, k-1+j)*A111088(j).
Sum_{k=0..n} T(n, k) = A112934(n).
G.f.: 1/(1-xy/(1-x/(1-2x/(1-3x/(1-4x/(1-... (continued fraction). - Paul Barry, Jan 29 2009
Sum_{k=0..n} T(n,k)*2^(n-k) = A168441(n). - Philippe Deléham, Nov 28 2009
EXAMPLE
Rows begin:
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 15, 7, 3, 1;
0, 105, 36, 12, 4, 1;
0, 945, 249, 64, 18, 5, 1;
0, 10395, 2190, 441, 100, 25, 6, 1:
0, 135135, 23535, 3807, 691, 145, 33, 7, 1;
0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1;
MAPLE
# Uses function PMatrix from A357368.
PMatrix(10, n -> doublefactorial(2*n-3)); # Peter Luschny, Oct 19 2022
CROSSREFS
Columns: A000007, A001147, A034430; diagonals: A000012, A001477, A055998.
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Oct 13 2005, Dec 20 2008
STATUS
approved
A232006 Triangular array read by rows: T(n,k) is the number of simple labeled graphs on vertex set {1,2,...,n} with exactly k components (all of which are trees) such that the labels {1,2,...,k} are all in distinct components (trees), n >= 0, 0 <= k <= n. +30
4
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 16, 8, 3, 1, 0, 125, 50, 15, 4, 1, 0, 1296, 432, 108, 24, 5, 1, 0, 16807, 4802, 1029, 196, 35, 6, 1, 0, 262144, 65536, 12288, 2048, 320, 48, 7, 1, 0, 4782969, 1062882, 177147, 26244, 3645, 486, 63, 8, 1, 0, 100000000, 20000000, 3000000, 400000, 50000, 6000, 700, 80, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Row sums = (n^n-n)/(n-1)^2 = A058128(n).
Column k without leading zeros is the k-th exponential (also called binomial) convolution of the sequence {A000272(n+1)} = {A232006(n+1, 1)}, for n >= 0, with e.g.f. LamberW(-x)/(-x), where LambertW is the principal branch of the Lambert W-function. This is also the row polynomial P(n, x) of the unsigned triangle A137452, evaluated at x = k. - Wolfdieter Lang, Apr 24 2023
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Proposition 5.3.2.
LINKS
Chad Casarotto, Graph Theory and Cayley's Formula, 2006
Alan D. Sokal, A remark on the enumeration of rooted labeled trees, arXiv:1910.14519 [math.CO], 2019.
Marc van Leeuwen, I am stuck with a combinatoric problem... Math Stackexchange, Answer May 14 2017.
Eric Weisstein's World of Mathematics, Lambert W-function
FORMULA
T(n, k) = k*n^(n-k-1).
T(n, k) = Sum_{i=0..n-k} T(n-1, k-1+i)*C(n-k,i), T(0, 0) = 1, T(n, 0) = 0 when n >= 1.
From Wolfdieter Lang, Apr 24 2023: (Start)
E.g.f. for {T(n+k, k)}_{n>=0} is (LambertW(-x)/(-x))^k, for k >= 0.
T(n, k) = Sum_{m=0..n-k} |A137452(n-k, m)|*k^m, for n >= 0 and k = 0..n. That is, T(n, n) = 1, for n >= 0, and T(n, k) = Sum_{m=1..n-k} binomial(n-k-1, m-1)*(n-k)^(n-k-m)*k^m, for k = 0..n-1 and n >= k+1. (End)
EXAMPLE
The triangle begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 0 1
2: 0 1 1
3: 0 3 2 1
4: 0 16 8 3 1
5: 0 125 50 15 4 1
6: 0 1296 432 108 24 5 1
7: 0 16807 4802 1029 196 35 6 1
8: 0 262144 65536 12288 2048 320 48 7 1
9: 0 4782969 1062882 177147 26244 3645 486 63 8 1
10: 0 100000000 20000000 3000000 400000 50000 6000 700 80 9 1
... Reformatted by Wolfdieter Lang, Apr 24 2023
MATHEMATICA
Prepend[Table[Table[k n^(n-k-1), {k, 0, n}], {n, 1, 8}], {1}]//Grid
PROG
(PARI) {T(n, k) = if( k<0 || k>n, 0, n^(n-k-1))}; /* Michael Somos, May 15 2017 */
CROSSREFS
Columns give A000007, A000272, A007334, A362354, A362355, A362356, ...
KEYWORD
nonn,tabl,easy
AUTHOR
Geoffrey Critzer, Nov 16 2013
STATUS
approved
page 1 2

Search completed in 0.009 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 29 14:02 EDT 2024. Contains 373851 sequences. (Running on oeis4.)