login
A370390
Number of permutations of [n] whose longest block is of length 2. A block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions.
3
0, 0, 1, 2, 10, 53, 334, 2428, 20009, 184440, 1881050, 21034905, 255967940, 3367720736, 47641219569, 721160081974, 11631770791362, 199159952915293, 3607908007376418, 68946510671942892, 1386140583681969289, 29247292475233307612, 646231776371742321826
OFFSET
0,4
LINKS
FORMULA
a(n) = A002628(n) - A000255(n-1).
G.f.: Sum_{k>=0} k! * x^k * ( ((1-x^2)/(1-x^3))^k - ((1-x)/(1-x^2))^k ).
PROG
(PARI) my(N=30, x='x+O('x^N)); concat([0, 0], Vec(sum(k=0, N, k!*x^k*(((1-x^2)/(1-x^3))^k-((1-x)/(1-x^2))^k))))
CROSSREFS
Column k=2 of A184182.
Sequence in context: A037619 A221610 A247102 * A009320 A204186 A009322
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 17 2024
STATUS
approved