login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247102
Expansion of g.f. (6*x+2)/(sqrt(-3*x^2-6*x+1)*(4*x^2+4*x)) - (2*x+1)/(2*x^2+2*x).
0
2, 10, 53, 298, 1727, 10207, 61154, 370090, 2256983, 13848085, 85387040, 528646015, 3284180720, 20462505850, 127816245053, 800143927210, 5018683475087, 31532297088781, 198419993271440, 1250291989478773, 7888160383113014
OFFSET
0,1
FORMULA
a(n) = Sum_{i=0..n+1} binomial(2*n-i+1,n-i+1)*(Sum_{j=0..n+1} binomial(j,-j+i)*binomial(n+1,j)).
a(n) ~ sqrt(3) * (3+2*sqrt(3))^(n+1) / (2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Nov 23 2014
Conjecture D-finite with recurrence: (n+1)*a(n) +(-2*n-5)*a(n-1) +3*(-8*n+7)*a(n-2) +15*(-2*n+3)*a(n-3) +9*(-n+2)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
MATHEMATICA
CoefficientList[Series[(6 x + 2) / (Sqrt[-3 x^2 - 6 x + 1] (4 x^2 + 4 x)) - (2 x + 1) / (2 x^2 + 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 22 2014 *)
PROG
(Maxima)
a(n):=sum(binomial(2*n-i+1, n-i+1)*sum(binomial(j, -j+i)*binomial(n+1, j), j, 0, n+1), i, 0, n+1);
CROSSREFS
Sequence in context: A037619 A221610 A378403 * A370390 A009320 A204186
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 22 2014
STATUS
approved