OFFSET
0,1
FORMULA
a(n) = Sum_{i=0..n+1} binomial(2*n-i+1,n-i+1)*(Sum_{j=0..n+1} binomial(j,-j+i)*binomial(n+1,j)).
a(n) ~ sqrt(3) * (3+2*sqrt(3))^(n+1) / (2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Nov 23 2014
Conjecture D-finite with recurrence: (n+1)*a(n) +(-2*n-5)*a(n-1) +3*(-8*n+7)*a(n-2) +15*(-2*n+3)*a(n-3) +9*(-n+2)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
MATHEMATICA
CoefficientList[Series[(6 x + 2) / (Sqrt[-3 x^2 - 6 x + 1] (4 x^2 + 4 x)) - (2 x + 1) / (2 x^2 + 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 22 2014 *)
PROG
(Maxima)
a(n):=sum(binomial(2*n-i+1, n-i+1)*sum(binomial(j, -j+i)*binomial(n+1, j), j, 0, n+1), i, 0, n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 22 2014
STATUS
approved