login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007334
Number of spanning trees in the graph K_{n}/e, which results from contracting an edge e in the complete graph K_{n} on n vertices (for n>=2).
(Formerly M1883)
9
1, 2, 8, 50, 432, 4802, 65536, 1062882, 20000000, 428717762, 10319560704, 275716983698, 8099130339328, 259492675781250, 9007199254740992, 336755653118801858, 13493281232954916864, 576882827135242335362, 26214400000000000000000
OFFSET
2,2
COMMENTS
The old name (referring to the Chen-Goyal article) was "[Number of] essential complementary partitions of [an] n-set."
This sequence was obtained using the deletion-contraction recursions satisfied by the number of spanning trees for graphs. It is readily seen that the number of spanning trees in K_{n}-e (the complete graph K_{n} with an edge e deleted) is (n-2)*(n^{n-3}). Since the number of spanning trees in K_{n} is n^{n-2}, we see that (n-2)*(n^{n-3})+f(n)=n^{n-2} by the deletion-contraction recursion. Hence it follows that f(n)=2*n^{n-3}. - N. Eaton, W. Kook and L. Thoma (andrewk(AT)math.uri.edu), Jan 17 2004
With offset 0, the number of acyclic functions from {1,...,n} to {1,...,n+2}. See link below. - Dennis P. Walsh, Nov 27 2011
With offset 0, a(n) is the number of forests of rooted labeled trees on n nodes in which some (possibly all or none) of the trees have been specially designated. a(n) = Sum_{k=1..n} A061356(n,k)*2^k. E.g.f. is exp(T(x))^2 where T(x) is the e.g.f for A000169. The expected number of trees in each forest approaches 3 as n gets large. Cf. A225497. - Geoffrey Critzer, May 10 2013
REFERENCES
J. Oxley, Matroid Theory, Oxford University Press, 1992.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W.-K. Chen and I. C. Goyal, Tables of essential complementary partitions, IEEE Trans. Circuit Theory, 18 (1971), 562-563.
W.-K. Chen and I. C. Goyal, Tables of essential complementary partitions, IEEE Trans. Circuit Theory, 18 (1971), 562-563. (Annotated scanned copy)
Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 19, 22.
N. Eaton, W. Kook and L. Thoma, Monotonicity for complete graphs, preprint, 2003.
Jean-Baptiste Priez and Aladin Virmaux, Non-commutative Frobenius characteristic of generalized parking functions: Application to enumeration, arXiv:1411.4161 [math.CO], 2014-2015.
FORMULA
a(n) = 2*n^{n-3} (n>=2).
E.g.f.: (-W(-x)/x)*exp(-W(-x)). - Paul Barry, Nov 19 2010 [With offset 0, and W = LambertW. Equals (W(-x)/(-x))^2 = (exp(-W(-x)))^2 (see a comment above). - Wolfdieter Lang, Nov 11 2022]
G.f.: Sum_{n>=1} a(n+1) * x^n / (1 + n*x)^n = x/(1-x). - Paul D. Hanna, Jan 17 2013
EXAMPLE
a(3)=2 because K_{3}/e consists of two vertices and two parallel edges, where each edge is a spanning tree.
MATHEMATICA
nn = 17; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
Range[0, nn]! CoefficientList[Series[Exp[ tx]^2, {x, 0, nn}], x] (* Geoffrey Critzer, May 10 2013 *)
PROG
(PARI) {a(n)=if(n==2, 1, 1-polcoeff(sum(k=2, n-1, a(k)*x^k/(1+(k-1)*x+x*O(x^n))^(k-1)), n))} /* Paul D. Hanna, Jan 17 2013 */
CROSSREFS
The sequence is A058127(n, n-2) for n >= 2. - Peter Luschny, Apr 22 2009
Cf. A007830.
Sequence in context: A225052 A295759 A089104 * A050398 A135081 A296366
KEYWORD
nonn
EXTENSIONS
a(6) corrected and more terms from Sean A. Irvine, Dec 19 2017
After correction, this became identical (except for the offset) with A089104, contributed by N. Eaton, W. Kook and L. Thoma (andrewk(AT)math.uri.edu), Jan 17 2004. The two entries have been merged using the older A-number. - N. J. A. Sloane, Dec 19 2017
STATUS
approved