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Next let Q' be the paramount matrix TABLE I
LA T e S MAREE! 7 3 3
et L e (P'(Ss); P'(S3)) or (P"(S); P'(Sy)
g 9, -9l 157 6 (123; 1,2,3) (1,23; 13,2) (1,23; 12,3) (13,2; 12,3)
SIEDaS SH-AR
Cederbaum [1] has shown that Q' cannot be displayed as in the hypoth-
esis of Theorem 2. However Qi.r.c=>0 for 1<i, r, c<4. Consequently, TABLE II
paramountcy and the condition that Q:...>0 are not sufficient to == = ———
guarantee the unimodular decomposition of Q". (P'(Ss); P"(S9) or (P"(S4); P'(S1)
JOHN BRUNO (1234; 1,2.3,4) (123,4; 14,2,3) (123,4; 1,24,3)
Dep. Elec. Eng. (123,4; 1,2,34) (1,234; 13,2,4) (1,234; 123,9)
] ] 1,234; 14,2,3) (14,23; 13,2,4) (14,23; 12,3,4)
P t U » ( » B pey. » ) 9=y
P:g‘;gg N"“J’ bl (14,23; 1,24,3) (14,23; 1,2,34) (134,2; 1,23,4)
3w P (134,2; 12,3,4) (134,2; 1,24,3) (13,24; 1,234)
» WHINBERO (13,24; 12,3,4) (13,24; 14,2,3) (13,24; 1,2,34)
Dep. Elec. Eng. (124.3: 1,23,4) (124,3; 13,2,4) (124,3; 1,2,34)
C.U.N.Y. (12,34; 1,23,4) (12,34; 132,4) (12,34; 14,2,3)
New York, N. Y. (12,34; 1,24,3)
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Tables of Essential Complementary Partitions

Abstract—Tables of essential complementary partitions of a set S; are
presented for k = 2, 3, 4, 5 where k is the number of elements of Sk.
They are sufficient for most practical applications.

In a recent paper Chen [1] has shown how the trees of a very com-
plicated graph can be generated by decomposition without redundancies
due to duplications. However, his generation formulas require that one
first tabulate all the essential complementary partitions of a set S for
some reasonably large values of k. Tn this correspondence we shall
present these tables for k=2, 3,4,5.

Let Si={1,2, - -, k}. Let C[P'(Sw); P"(S1)] be a pair of essential
complementary partitions of Sy Since the pair of complementary parti-
tions [P'(Se); P"(Sy)] are essential if, and only if, the pair [P(Sk); P(S»]
are essential, it is clear that we do not need to list them all; half would
be sufficient. The other half can easily be obtained by interchanging the
roles of P'(Sx) and P”'(Sx).

For a given set S let «(S) be the number of its elements. Thus o(Sk)
— k. For a fixed & the set H(Sy) of all possible ClP/(S0): P'(SK)] can be
generated as follows. We first generate the set H(P(Sk)) of all possible
partitions P(Sx) of Sk. which in turn can be generated iteratively from
H(P(S).)), k=2, by inserting the integer k to the elements of P(Sk_1).!
In H(P(Sy)) we form all possible pairs [P'(SH); P"'(S)] with the property
that «[P(S)\JP"(Sr)]=k+1. Then we use the algorithm proposed in
[1] to test the essentiality of [P'(S¥); P'(Sy)]. Based on this principle, a
computer program was written in Fortran IV for the IBM System 360
Model 44 digital computer [2]. The results are presented in Tables
For k=2 there are only two
C[P(S5); P"(Ss)], one of which is cl{1, 2}; {12}]. Thus we have
o H(S2)) =2, o H(S5)) =8, o H(S1) = 50, and o H(S5)) =432.

To show that these are indeed the right numbers for H(S)), we use
the following argument. Let G’ and G be the k-node complete graph,

Manuscript received December 21, 1970.
1 It also includes the case where {k} is added to P(Sk-1).

2>8>§o) 4>

and let G be the graph obtained by superimposing G’ on G'. For each
element C[P'(Sy), P"(Sy)] of H(Sy, let p; (x=1, 2,---, u) and
pé' (sl 2,0 s e be the elements of P'(Sk) and P"'(Sk), respectively.
Using the symbols defined in [1], it is not difficult to see that there are

u

11 la(p) )l =+ and " =

=1

11 [t ey

yml

g =

u-trees ((P'(Sy)) in G’ and c-trees H(P"(Sy)) in G, respectively. Thus for
each C[P'(Sw); P"(Sy)] there are 8=8'8" corresponding trees in G. Sum-
ming over all 8 for all the elements of H(Sx), we obtain the number of
trees of G. which is known to be 22k, k=2 (see, for example, [5]).

From Table II we find that there are 12 partitions, each containing
an element having three integers, and 12 partitions, none of their ele-
ments having more than two integers. Thus we have

2(42 4 12-3! +12:1) = 2.64 = 2(2-4)72
Similarly, from Table IIT we obtain
2(5% + 2042 + 120-31 + 60-1 + 15-31-31) = 2000 = 2(2-5)%

For k =6 there are 4802 partitions in H(Ss). In general, for k=2 there
are

2k 4 N

essential complementary partitions of Si. Since a k-node graph has at
most k¥ trees, it is clear that it is not advantageous to decompose a
graph along all of its nodes in the form of parallel connections, as
suggested by Arango ef al. [4].

The elements of H(Ss) have also been generated. However, they are
too numerous to be listed here. For the interested reader, the computer
program together with the table for H(Ss) may be found in [2].

Finally, we mention that for most practical networks such as a
cascade of multistage amplifiers, the tables presented in this corre-
spondence are sufficient for generating trees by decomposition in their
corresponding graphs, since usually there are only a few feedback loops.

wWal-K a1 CHEN?

1. C. GoyaL

Dep. Elec. Eng.
Clippinger Res. Labs.
Ohio Univ.

Athens, Ohio 45701

: Now a Visiting Associate Professor, School of Electrical Engineering, Purdue Uni-
versity, Lafayette, Ind. 47907.
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ITI. SINGULAR PARAMOUNT MATRICES

The following theorem provides a connection between paramount
and totally unimodular matrices.

eorem I

t Q be a pX p paramount matrix of rank s satisfying
ey
# 0.
G
Then Q can\be expressed as
Q = AQ,A
where A4 is a pXs totally unimodular matrix and Q. is the submatrix

formed from the st s rows and columns of Q.
Proof: Partitio§ Q as

[- Qa le
Q=i (10)
L Q;l ‘ Q22
Set
|
' OsX(P—c)
= - =
1];——;
and form 7Q:
1.1
7Q = | -
0<p—s)>< :lle
Since det(7) 0, the rank of T'Q is s and therefore
Qa2 — QuQ: Qi = 0ty (i1
Setting 4= [1,| 0;'01:) and using (1) and (2), we can press Q as
Q = A'Q.A. (12)
It remains to show that A4 is a totally unimodular matrix, xpanding

(3) using the Binet-Cauchy formula, we get

E T kg g e il
;) =de@ual, AY 7 Dl

Jie e g Zyse o Jie - g
Using the fact that Q is a paramount matrix in conjunction with (4),

easy to show that the absolute values of the nonzero sXs minors of
are all equal; that is, if

Fikisowe i
A(, f)#o xad A(, S,);éo
/T L 5 ]l"']s

then

A<19)=A ls)
-, Y Tl

Moreover, the modulus is unity since 4 contains an $X s unit matrix. To
complete the theorem, we must show that the nonzero minors of 4 of
order less than s have a modulus of unity. That this is true can be seen
by making a correspondence between minors whose order is less than s

10iy;isan iX jmatrix with all zero entries, and 1; is the i Xi unit matrix.

and certain minors of A4 of order s. Let
4 (11 = 14)
Jic g
4
besuch that <. Letill, -+ -, i be such that iy, - -

ir form a complete set of indices on the integers 1, - - -
minor corresponding to

./ -
“slerand iy, - - -
, 5. The sth-order

A"

Jiee g
L SRl i -z})
g ..1ja’_rj‘...jr 1
It follows from the structure of 4 that
PSS S R S
e (7 Pl e )
Jiee gy (R L PR W A

IV. UNIMODULAR DECOMPOSITION

is

Theorem 2

Let Q=|gi;]=A4DAt, where A=[a,;] is a pXb totally unimodular
matrix and D=[d;] is a bxXb diagonal matrix with positive diagonal
terms. Then

20, foralll <4,7¢< p.

Qire = qui + ,qﬂ| e | 11n'| = I(hn
Proof: The i, jth element of Q is

h
qi; = Z Arrttintts.
Pt

It is well known [1] that for fixed iand j all the nonzero products i,

fork=1,- .-, b, havethe same sign. Consequently,
b
|‘1|’f| - kz:dkkl a:’kajkl a
-1

Therefore we can write Q; ... as
b
Qi = . Aialin + | areaor| — | amair| — | acaix| 1.
k1

We prove Q;....>0 by showing that each term in the summation is non-
negative,

Case 1: a,,=0; therefore the only contribution is from
which is nonnegative.

Case 2: 4370 and a,ac =0; therefore the term

| anac|,

flkk[afk = | arkaik| IS | arkaikl ]

is nonnegative since at least one of the terms |a,ka.7,| or |a¢ka.-kl is zero.

Case 3: a0 and a,uau #0; therefore

diilais + | @ | — | anttie| — | aerain| ] = 0.

We conclude, therefore, that Q;.,.,>0 for 1 <i,re<p.

E\amp[e
he matrix
20 —10 0
Q=|-10 35 —30
0 —30 36

is a paramoiyt matrix [1]; however O does not satisfy Theorem 2 since
Quia=3540—10—30 = — 5.

Accordingly, the aramountcy condition and the condition of Theorem
2 are independent

J

J

-
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TABLE III

(P'(Ss); P"(Ss)) or (P"(Ss); P'(S5))

(1234,5;
(12354,
(123,45;
(123.45;
(1,2345;
(1,2345;
(15,234;
(15,234;
(14,235;
(14,235;
(145,23,
(145.23;
(1345,2;
(134,25;
(134,25;
(135,24;
(135.24;
(13,245,
(13,245;
(1245,3;
(124,35;
(124,35;
(125,34,
(125,34,
(12,345;
(12,345;
(13,24,5;
(13.24.5:
(13,24,5;
(13,24,5;
(1,234,5;
1,234,5;
L(1,234,5;
(134,2.5;
(134,2,5;
(134.2,5:
(124,3,5;
(124.3,5:
(124,3,5;
(14,23.5;
(14,23.5;
(14,23.5;
(14,23,5;
(123,4,5;
(123.4,5;
(123.4,5;
(12,34,5;
(12.34,5;
(12,34,5;
(12,34.5;
(1,235.4;
(1.235,4:
(15,23.4;
(15.23.4;
(15,23,4;
(1,23,45;
(1,23,45;
(135,2,4;
(135,2,4;
(13,25.4;
(13,25.4;
(13,2,45;
(13,2,45;
(125,3.4;
(12,354,
L' 12.35.4;
(123,45,
(145,2,3;
(14,25.3:
(14,2,35;
(15,24,3;

(12345; 1,2,3,4,5)

1,2,35,4)
14,2,3,5)
1,24,3,5)
15,2,3,4)
12,3,4,5
15,2,3,4)
13,2,4.5)
1,2,3,45)
13,2,4,5)
1,2,3,45)
13,2.4,5)
1,2,35,4)
1,23.4,5)
1,24,3.5)
1,2,35,4)
14,2,3,5)
1,25,3,4)
14,2,3,5)
15,2,3,4)
1,23.4,5)
13,2,4,5)
15,2.3,4)
1,24,3,5)
1,23,4,5)
1,24,3,5)
1,23,4,5)
1,235,4)
125,3,4)
145,2,3)
15,2,34)
135,2,4)
125,3,4)
145,2,3)
1,235,4)
125,3,4)
15,24,3)
1,235,4)
135,2,4)
15,2,34)
135,2,4)
125,3,4)
15,24,3)
15,2,34)
145,2,3)
15,24,3)
15,2,34)
1,235,4)
135,2,4)
145,2,3)
15,24,3)
13,2,45)
15,24,3)
12,3,45)
1,245.3)
1,2,345)
125,3,4)
14,2,35)
12,3,45)
1,25,34)
14,2,35)
15,2,34)
12,35.4)
1,24,35)
1,24,35)
14,25,3)
15,2,34)
1,24,35)
1,24,35)
15,2,34)
1,245,3)

1,2,345)

(1234,5;
(1234,5;
(1235,4;
(123,45;
(123 ,45;
(1,2345;
(15,234;
(15,234;
(14,235;
(14,235;
(145,23;
(145,23;
(1345,2;
(1345,2;
(134,25;
(134,25;
(135,24;
(135,24;
(13,245;
(13,245;
(1245,3;
(124,35;
(124,35;
(125,34;
(125,34;
(12,345;
(12,345;
(13,24,5;
(13,24,5;
(13,24,5;
(13,24,5;
(1,234,5;
(1,234,5;
(1,234,5;
(134,2,5;
(134,2,5;
(134,2,5;
(124,3,5;
(124,3,5;
(124,3,5;
(14,23,5;
(14,23,5;
(14,23,5;
(14,23,5;
(123,4,5;
(123,4,5;
(123,4,5;
(12,34,5;
(12,34,5;
(12,34,5;
(12,34,5;
(1,235,4;
(1,2354;
(15,23,4;
(15,23,4;
(1,23,45;
(1,23.45;
(1,23,45;
(135,2,4;
(13,25,4;
(13,25,4;
(13,254;
(13,2,45;
(13,2,45;
(125,3,4;
(12,354;
(12,35,4;
(12,3.45;
(145,23,
(14,25,3;
(14,2,35:

15,2,3,4)
1,2,3,45)
1,2,34,5)
14,2,3,5)
1,25,3,4)
14,2,3,5)
12,3.4,5)
1,25,3,4)
12,3.4,5)
1,2,34,5)
12,3.4,5)
1,2,34,5)
12,3,4,5)
1,25,3.4)
1,23,4,5)
1,2,3,45)
1,23,4,5)
1,2,3,45)
1,23,4,5)
1,2,354)
1,2,34,5)
1,23,4,5)
1,25,3,4)
14,2,3,5)
1,2,354)
14,2,3,5)
15,2,3,4)
15,23,4)
12,35,4)
14,25,3)
1,25,34)
13,25,4)
12,35,4)
14,25,3)
15,23,4)
12,35,4)
1,245,3)
15,23,4)
13,25,4)
1,25,34)
13,25,4)
12,35,4)
1,245,3)
1,25,34)
14,25,3)
1,245,3)
1,25,34)
15,23,4)
13,25,4)
14,25,3)
1,245,3)
12,3,45)
15,2,34)
14,25,3)
1,24,35)
135.2,4)
12,35,4)
15,24,3)
14,25,3)
12,3,45)
15,24,3)
1,2,345)
14,25,3)
1,25,34)
1,2,345)
15,24,3)
1,25.34)
15,2,34)
1,25,34)
1,2,345)
1,25,34)

(1,245,3; 15,2,34)

(1234,5;
(12354;
(1235,4;
(123,45;
(123,45;
(1,2345;
(15,234;
(15,234;
(14,235;
(14,235;
(145,23;
(145,23;
(1345,2;
(134,25;
(134,25;
(135,24;
(135,24;
(13,245;
(13,245;
(1245,3;
(1245,3;
(124,35;
(124,35;
(125,34;
(125,34;
(12,345;
(12,345;
(13,24,5;
(13,24,5;
(13,24,5;
(13,24,5;
(1,234,5;
(1,234,5;
(1,234,5;
(134,2,5;
(134,2,5;
(134,2,5;
(124,3,5;
(124,3,5;
(124,3,5;
(14,23,5;
(14,23,5;
(14,23,5;
(14,23,5;
(123,4,5;
(123,4,5;
(123,4,5;
(12,34,5;
(12,34,5;
(12,34,5;
(12,34,5;
(1,235,4;
(15,23,4;
(15,23,4;

1,25,3,4)
1,24,3,5)
1,2,3,45)
1,.2,34,5)
1,2,35,4)
13,2,4,5)
14,2,3,5)
1,2,35,4)
1,24,3,5)
15,2,3,4)
1,24,3,5)
1,25,3,4)
1,24,3.5)
12,3,4,5)
15,2,3,4)
12,3,4,5)
1,2,34,5)
12,3,4,5
1,2,34,5)
13,2,4,5)
1,2,35.4)
1,2,34,5)
1.2,3,45)
13,2,4,5)
1,2,3,45)
13,2,4,5
1,25,3,4)
1,23,45)
12,3,45)
14,2,35)
1,2,345)
13,2,45)
12,3,45)
14.2,35)
1,23,45)
12,3,45)
1,24,35)
1,23,45)
13,2,45)
1,2,345)
13,2,45)
12,3,45)
1,24,35)
1,2,345)
14,2,35)
1,24,35)
1,2,345)
1,23,45)
13,2,45)
14,2,35)
1,24,35)
145,2,3)
13,2,45)
14,2,35)

(15,23,4; 1,25,34)
(1,23,45; 13,25.4)
(1.23.45; 14,25,3)
(1.23.45; 15,2,39)
(135.2,4; 1,245,3)
(13,25.4; 145.2,3)
(13.25,4; 1.24,35)
(13.2,45; 125,3,4)
(13.2,45; 15,24,3)
(125,3,4; 14,2,35)
(12,35,4; 145.2,3)
(12,35,4; 1,245,3)
(12,3,45; 14,2,35)
(12,3,45; 1,25,34)
(14.25,3; 1,24,35)
(14,2,35; 15,24,3)
(15.24,3; 1,25,34)
(1,24,35; 15,2,34)
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On Signal Flow Graph Analysis of Ladder Networks

Abstract—A unified short-cut tool for the analysis of both network and
sensitivity functions of a ladder network is given. New results on the sen-
sitivity analysis provide a simple useful method for laboratory measure=-
ments.

I. INTRODUCTION

Special techniques for the analysis of a Jadder network have received
extensive attention in the past [1]-[5]. All Have been mainly concerned
with short-cut methods of obtaining network functions or their coeffi-
cients. One particularly attractive method seems to be the recurrence
formula of Bashkow, who obtained the result based on a property of
the triple diagonal matrix [2].

In this correspondence it is shown that the use of the signal flow
graph leads to several recurrence formulas (including the one in [2]) by
inspection. Then, as with Bashkow’s formulas, network functions are
obtained directly. Moreover, upon investigating some properties of the
sequence of functions so generated, it is shown that all sensitivity func-
tions can be formed readily from these functions. Physical interpreta-
tions of the results lead to new insight and provide simple measurement
techniques in the sensitivity analysis of ladder networks.

1. THE GRAPH AND PROPERTIES OF ITS TRANSMISSIONS

For the ladder network in Fig. 1, one may write

I/n 354 Zn~lln-—1 + 1/7172; I77: =
In.-J = anf21/n—2 S In~11
Va=ZLi +Vo
I, = YoVoy -1 =0. (1)

A signal flow graph representation of (1) is given in Fig. 2 [1]. The graph
contains no feedback loops. Let the node variables of the graph be x,,
X1, -+ - Xn, corresponding to Vo, f1, -+ -, V.., and let the transmission
{rom xo to xx be Tx. Then, it is immediately clear that

Te = hicaTry + Ty, Rl W R (2a)
To 1 T.4&0 (2b)
where
hy = Yo h=2Zy -+, hnoy = Zna

since there are two incoming paths to node xx (except xy), with trans-
missions Ax_ and 1 from node x¢_1 and x¢_2, respectively. Equation (2)
has been obtained by Bashkow with an entirely different meaning for
T4 i.e., it is the determinant of a kth-order matrix. The graph gain from
the source node xo to xxis

(3a)
and in particular,

(3b)

Manuscript received May 26, 1970; revised February 8, 1971.



