login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array read by rows: T(n,k) is the number of simple labeled graphs on vertex set {1,2,...,n} with exactly k components (all of which are trees) such that the labels {1,2,...,k} are all in distinct components (trees), n >= 0, 0 <= k <= n.
4

%I #53 May 31 2023 16:23:34

%S 1,0,1,0,1,1,0,3,2,1,0,16,8,3,1,0,125,50,15,4,1,0,1296,432,108,24,5,1,

%T 0,16807,4802,1029,196,35,6,1,0,262144,65536,12288,2048,320,48,7,1,0,

%U 4782969,1062882,177147,26244,3645,486,63,8,1,0,100000000,20000000,3000000,400000,50000,6000,700,80,9,1

%N Triangular array read by rows: T(n,k) is the number of simple labeled graphs on vertex set {1,2,...,n} with exactly k components (all of which are trees) such that the labels {1,2,...,k} are all in distinct components (trees), n >= 0, 0 <= k <= n.

%C Row sums = (n^n-n)/(n-1)^2 = A058128(n).

%C Column k without leading zeros is the k-th exponential (also called binomial) convolution of the sequence {A000272(n+1)} = {A232006(n+1, 1)}, for n >= 0, with e.g.f. LamberW(-x)/(-x), where LambertW is the principal branch of the Lambert W-function. This is also the row polynomial P(n, x) of the unsigned triangle A137452, evaluated at x = k. - _Wolfdieter Lang_, Apr 24 2023

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Proposition 5.3.2.

%H G. C. Greubel, <a href="/A232006/b232006.txt">Rows n=0..75 of triangle, flattened</a>

%H Chad Casarotto, <a href="http://www.math.uchicago.edu/~may/VIGRE/VIGRE2006/PAPERS/Casarotto.pdf">Graph Theory and Cayley's Formula</a>, 2006

%H Alan D. Sokal, <a href="https://arxiv.org/abs/1910.14519">A remark on the enumeration of rooted labeled trees</a>, arXiv:1910.14519 [math.CO], 2019.

%H Marc van Leeuwen, <a href="http://math.stackexchange.com/questions/2280076/">I am stuck with a combinatoric problem...</a> Math Stackexchange, Answer May 14 2017.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-function</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lambert_W_function">Lambert W function</a>

%F T(n, k) = k*n^(n-k-1).

%F T(n, k) = Sum_{i=0..n-k} T(n-1, k-1+i)*C(n-k,i), T(0, 0) = 1, T(n, 0) = 0 when n >= 1.

%F From _Wolfdieter Lang_, Apr 24 2023: (Start)

%F E.g.f. for {T(n+k, k)}_{n>=0} is (LambertW(-x)/(-x))^k, for k >= 0.

%F T(n, k) = Sum_{m=0..n-k} |A137452(n-k, m)|*k^m, for n >= 0 and k = 0..n. That is, T(n, n) = 1, for n >= 0, and T(n, k) = Sum_{m=1..n-k} binomial(n-k-1, m-1)*(n-k)^(n-k-m)*k^m, for k = 0..n-1 and n >= k+1. (End)

%e The triangle begins:

%e n\k 0 1 2 3 4 5 6 7 8 9 10 ...

%e 0: 1

%e 1: 0 1

%e 2: 0 1 1

%e 3: 0 3 2 1

%e 4: 0 16 8 3 1

%e 5: 0 125 50 15 4 1

%e 6: 0 1296 432 108 24 5 1

%e 7: 0 16807 4802 1029 196 35 6 1

%e 8: 0 262144 65536 12288 2048 320 48 7 1

%e 9: 0 4782969 1062882 177147 26244 3645 486 63 8 1

%e 10: 0 100000000 20000000 3000000 400000 50000 6000 700 80 9 1

%e ... Reformatted by _Wolfdieter Lang_, Apr 24 2023

%t Prepend[Table[Table[k n^(n-k-1),{k,0,n}],{n,1,8}],{1}]//Grid

%o (PARI) {T(n, k) = if( k<0 || k>n, 0, n^(n-k-1))}; /* _Michael Somos_, May 15 2017 */

%Y Cf. A058128, |A137452|.

%Y Columns give A000007, A000272, A007334, A362354, A362355, A362356, ...

%K nonn,tabl,easy

%O 0,8

%A _Geoffrey Critzer_, Nov 16 2013