This site is supported by donations to The OEIS Foundation.

User:Jason Kimberley/CDEall6

From OeisWiki
Jump to: navigation, search
girth C D E
Cge Dge Ege
Ceq Deq Eeq

Index of sequences counting connected k-regular simple graphs with girth at least g

wiki A185131 A184941 A184951 A184961 A184971 A184981 A184991
\ 0 1 2 3 4 5 6 7 8 9 10 11
3 A068934 A005177 3 A179184 A002851 A006820 A006821 A006822 A014377 A014378 A014381 A014382 A014384
4 A186714 A186724 4 A185114 A014371 A033886 A058275 A058276 A181153 A181154 A181170
5 A186715 A186725 5 A185115 A014372 A058343 A205295
6 A186716 A186726 6 A185116 A014374 A058348
7 A186717 A186727 7 A185117 A014375
8 A186718 A186728 8 A185118 A014376
A186719 A186729 9 A185119 A210709

A185131 is also tabulated by House of Graphs.

See also the Magma code of this index.


girth C D E
Cge Dge Ege
Ceq Deq Eeq

Index of sequences counting connected k-regular simple graphs with girth exactly g

A003982 A198303 A184940 A184950 A184960 A184970 A184980
\ 0 1 2 3 4 5 6 7 8 9
A186733 A186743 3 A000004 A000004 A185013 A006923 A184943 A184953 A184963* A184973* A184983* A184993*
A186734 A186744 4 A000004 A000004 A185014 A006924 A184944 A184954 A184964* A184974*
A186735 A186745 5 A000004 A000004 A185015 A006925 A184945 A184955
A186736 A186746 6 A000004 A000004 A185016 A006926 A184946
A186747 7 A000004 A000004 A185017 A006927
A186748 8 A000004 A000004
9 A000004 A000004


2 3 4 5 6 7
A059841 A079978 A121262 A079998 A079979 A082784



girth C D E
Cge Dge Ege
Ceq Deq Eeq

Index of sequences counting disconnected k-regular simple graphs with girth at least g

wiki A185220 A185230 A185240 A185250
\ 0 1 2 3 4 5 6 7 8 9 10 11
3 A068933 A068932 3 A157928 A157928 A165652 A165653 A033483 A165655 A165656 A165877 A165878 A185293 A185203 A185213
4 A185204 A185214 4 A157928 A157928 A185224 A185234 A185244 A185254 A185264* A185274* A185284* A185294*
5 A185205 A185215 5 A157928 A157928 A185225 A185235 A185245* A185255*
6 A185206 A185216 6 A157928 A157928 A185226 A185236 A185246*
7 A185207 A185217 7 A157928 A157928 A185227 A185237*
8 A185218 8 A157928 A157928 A185228 A185238*
A185219 9 A157928 A157928 A185229



girth C D E
Cge Dge Ege
Ceq Deq Eeq

Index of sequences counting disconnected k-regular simple graphs with girth exactly g

A210710 lost :-( A185010 A185020 A185030 A185040 A185050
\ 0 1 2 3 4 5 6 7 8
A210703 A210713 3 A000004 A000004 A210723 A185033 A185043 A185053 A185063
A210704 A210714 4 A000004 A000004 A185024 A185034 A185044
A210705 A210715 5 A000004 A000004 A185025 A185035
A210706 A210716 6 A000004 A000004 A185026 A185036
A210717 7 A000004 A000004 A185027 A185037
A210718 8 A000004 A000004 A185028
9 A000004 A000004 A185029

Notice that each sequence above is not the disconnected Euler transformation of the corresponding sequence counting connected k-regular simple graphs with girth exactly g: a disconnected graph with girth exactly g need only have one component with girth exactly g; the other component(s) only need have girth at least g.


girth C D E
Cge Dge Ege
Ceq Deq Eeq

Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g

A026807 A185330 A185340
\ 0 1 2 3 4 5 6 7 8
A051031 A005176 3 A000012 A000012 A008483 A005638 A033301 A165626 A165627 A165628 A180260
A185304 A185314 4 A000012 A000012 A008484 A185334 A185344 A185354 A185364
A185305 A185315 5 A000012 A000012 A185325 A185335
A185306 A185316 6 A000012 A000012 A185326 A185336
A185317 7 A000012 A000012 A185327
A185318 8 A000012 A000012 A185328
A185319 9 A000012 A000012 A185329

* means identical to connected sequence for now because no intersection with disconnected.



girth C D E
Cge Dge Ege
Ceq Deq Eeq

Index of sequences counting not necessarily connected k-regular simple graphs with girth exactly g

A026794 A185130 A185140
\ 0 1 2 3 4 5 6 7 8
A185643 A198313 3 A000004 A000004 A026796 A185133 A185143 A185153 A185163
A185644 A198314 4 A000004 A000004 A026797 A185134 A185144
A185645 A198315 5 A000004 A000004 A026798 A185135
A185646 A198316 6 A000004 A000004 A026799 A185136
A198317 7 A000004 A000004 A026800
A198318 8 A000004 A000004 A026801
9 A000004 A000004 A026802

Notice that each sequence above is not the Euler transformation of the corresponding sequence counting connected k-regular simple graphs with girth exactly g: a disconnected graph with girth exactly g need only have one component with girth exactly g; the other component(s) only need have girth at least g.