login
A165653
Number of disconnected 3-regular (cubic) graphs on 2n vertices.
12
0, 0, 0, 0, 1, 2, 9, 31, 147, 809, 5855, 54477, 633057, 8724874, 137047391, 2391169355, 45626910415, 942659626031, 20937539944549, 497209670658529, 12566853576025106, 336749273734805530, 9534909974420181226
OFFSET
0,6
FORMULA
a(n) = A005638(n) - A002851(n).
a(n) = A068933(2n, 3).
MATHEMATICA
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {_, _}][[All, 2]]];
A005638 = A@005638;
A002851 = A@002851;
a[n_] := A005638[[n + 1]] - A002851[[n + 1]];
a /@ Range[0, 20] (* Jean-François Alcover, Jan 21 2020 *)
CROSSREFS
3-regular simple graphs: A002851 (connected), this sequence (disconnected), A005638 (not necessarily connected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), this sequence (k=3), A033483 (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).
Sequence in context: A150910 A150911 A150912 * A182265 A212873 A109770
KEYWORD
nonn,hard
AUTHOR
Jason Kimberley, Sep 28 2009
STATUS
approved