

A186715


Irregular triangle C(n,k)=number of connected kregular graphs on n vertices having girth at least five.


15



1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 9, 0, 0, 1, 0, 0, 0, 1, 49, 0, 0, 1, 0, 0, 0, 1, 455, 0, 0, 1, 0, 1, 0, 0, 1, 5783, 2, 0, 0, 1, 0, 8, 0, 0, 1, 90938, 131, 0, 0, 1, 0, 3917, 0, 0, 1, 1620479, 123859
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,34


REFERENCES

M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137146. [From Jason Kimberley, Jan 29 2011]


LINKS

Jason Kimberley, Table of i, a(i) for i = 1..111 (n = 1..28)
M. Meringer, Tables of Regular Graphs
Jason Kimberley, Partial table of i, a(i) for i = 1..137 (n = 1..33)
Jason Kimberley, Partial table of i, n, k, a(i)=C(n,k) for n = 1..33
Jason Kimberley, Connected regular graphs with girth at least 5
Jason Kimberley, Index of sequences counting connected kregular simple graphs with girth at least g


EXAMPLE

01: 1;
02: 0, 1;
03: 0, 0;
04: 0, 0;
05: 0, 0, 1;
06: 0, 0, 1;
07: 0, 0, 1;
08: 0, 0, 1;
09: 0, 0, 1;
10: 0, 0, 1, 1;
11: 0, 0, 1, 0;
12: 0, 0, 1, 2;
13: 0, 0, 1, 0;
14: 0, 0, 1, 9;
15: 0, 0, 1, 0;
16: 0, 0, 1, 49;
17: 0, 0, 1, 0;
18: 0, 0, 1, 455;
19: 0, 0, 1, 0, 1;
20: 0, 0, 1, 5783, 2;
21: 0, 0, 1, 0, 8;
22: 0, 0, 1, 90938, 131;
23: 0, 0, 1, 0, 3917;
24: 0, 0, 1, 1620479, 123859;
25: 0, 0, 1, 0, 4131991;
26: 0, 0, 1, 31478582, 132160608;
27: 0, 0, 1, 0, 4018022149;
28: 0, 0, 1, 656783890, 118369811960;


CROSSREFS

The row sums are given by A186725.
Connected kregular simple graphs with girth at least 5: A186725 (all k), this sequence (triangle); A185115 (k=2), A014372 (k=3), A058343 (k=4), A205295 (k=5).
Triangular arrays C(n,k) counting connected simple kregular graphs on n vertices with girth at least g: A068934 (g=3), A186714 (g=4), this sequence (g=5), A186716 (g=6), A186717 (g=7), A186718 (g=8), A186719 (g=9).
Triangular arrays C(n,k) counting connected simple kregular graphs on n vertices with girth exactly g: A186733 (g=3), A186734 (g=4).
Sequence in context: A219486 A206499 A109527 * A219485 A057918 A016380
Adjacent sequences: A186712 A186713 A186714 * A186716 A186717 A186718


KEYWORD

nonn,hard,tabf


AUTHOR

Jason Kimberley, Oct 17 2011


STATUS

approved



