

A184970


Irregular triangle C(n,g) counting the connected 7regular simple graphs on 2n vertices with girth exactly g.


7




OFFSET

4,2


COMMENTS

The first column is for girth exactly 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2. The row length is incremented to g2 when 2n reaches A054760(7,g).


LINKS

Table of n, a(n) for n=4..10.
Jason Kimberley, Index of sequences counting connected kregular simple graphs with girth exactly g
Jason Kimberley, Incomplete table of i, n, g, C(n,g)=a(i) for row n = 4..11


EXAMPLE

1;
5;
1547;
21609300, 1;
733351105933, 1;
?, 8;
?, 741;
?, 2887493;


CROSSREFS

Connected 7regular simple graphs with girth at least g: A184971 (triangle); chosen g: A014377 (g=3), A181153 (g=4).
Connected 7regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184973 (g=3), A184974 (g=4)).
Triangular arrays C(n,g) counting connected simple kregular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), A184950 (k=5), A184960 (k=6), this sequence (k=7), A184980 (k=8).
Sequence in context: A169620 A181992 A145694 * A184973 A184971 A014377
Adjacent sequences: A184967 A184968 A184969 * A184971 A184972 A184973


KEYWORD

nonn,hard,more,tabf


AUTHOR

Jason Kimberley, Feb 25 2011


STATUS

approved



