The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186733 Triangular array C(n,r) = number of connected r-regular graphs, having girth exactly 3, with n nodes, for 0 <= r < n. 12
 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 3, 5, 3, 1, 1, 0, 0, 0, 0, 16, 0, 4, 0, 1, 0, 0, 0, 13, 57, 59, 21, 5, 1, 1, 0, 0, 0, 0, 263, 0, 266, 0, 6, 0, 1, 0, 0, 0, 63, 1532, 7847, 7848, 1547, 94, 9, 1, 1, 0, 0, 0, 0, 10747, 0, 367860, 0, 10786 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,26 LINKS Jason Kimberley, Table of i, a(i)=C(n,r) for i = 1..136 (n = 1..16) FORMULA C(n,r) = A068934(n,r) - A186714(n,r), noting that A186714 has 0 <= r <= n div 2. EXAMPLE 01: 0 ; 02: 0, 0 ; 03: 0, 0, 1 ; 04: 0, 0, 0, 1 ; 05: 0, 0, 0, 0, 1 ; 06: 0, 0, 0, 1, 1, 1 ; 07: 0, 0, 0, 0, 2, 0, 1 ; 08: 0, 0, 0, 3, 5, 3, 1, 1 ; 09: 0, 0, 0, 0, 16, 0, 4, 0, 1 ; 10: 0, 0, 0, 13, 57, 59, 21, 5, 1, 1 ; 11: 0, 0, 0, 0, 263, 0, 266, 0, 6, 0, 1 ; 12: 0, 0, 0, 63, 1532, 7847, 7848, 1547, 94, 9, 1, 1 ; 13: 0, 0, 0, 0, 10747, 0, 367860, 0, 10786, 0, 10, 0, 1 ; 14: 0, 0, 0, 399, 87948, 3459376, 21609299, 21609300, 3459386, 88193, 540, 13, 1, 1 ; 15: 0, 0, 0, 0, 803885, 0, 1470293674, 0, 1470293676, 0, 805579, 0, 17, 0, 1 ; 16: 0, 0, 0, 3268, 8020590, 2585136287, 113314233799, 733351105933, 733351105934, 113314233813, 2585136741, 8037796, 4207, 21, 1, 1; CROSSREFS The sum of the n-th row is A186743(n). Connected k-regular simple graphs with girth exactly 3: this sequence (triangle), A186743 (any k); chosen k: A006923 (k=3), A184943 (k=4), A184953 (k=5), A184963 (k=6), A184973 (k=7), A184983 (k=8), A184993 (k=9). Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *at least* g: A068934 (g=3), A186714 (g=4), A186715 (g=5), A186716 (g=6), A186717 (g=7), A186718 (g=8), A186719 (g=9). Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *exactly* g: this sequence  (g=3), A186734 (g=4). Sequence in context: A123635 A124304 A165408 * A332042 A171368 A322353 Adjacent sequences:  A186730 A186731 A186732 * A186734 A186735 A186736 KEYWORD nonn,tabl,hard AUTHOR Jason Kimberley, Mar 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 28 04:39 EST 2020. Contains 332321 sequences. (Running on oeis4.)