This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185116 Number of connected 2-regular simple graphs on n vertices with girth at least 6. 14
 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 LINKS Jason Kimberley, Connected regular graphs with girth at least 6 FORMULA a(0)=1; for 0=6 , a(n)=1. This sequence is the inverse Euler transformation of A185326. EXAMPLE The null graph is vacuously 2-regular and, being acyclic, has infinite girth. There are no 2-regular simple graphs with 1 or 2 vertices. The n-cycle has girth n. CROSSREFS 2-regular simple graphs with girth at least 6: this sequence (connected), A185226 (disconnected), A185326 (not necessarily connected). Connected k-regular simple graphs with girth at least 6: A186726 (any k), A186716 (triangle); specified degree k: this sequence (k=2), A014374 (k=3), A058348 (k=4). Connected 2-regular simple graphs with girth at least g: A179184 (g=3), A185114 (g=4), A185115 (g=5), this sequence (g=6), A185117 (g=7), A185118 (g=8), A185119 (g=9). Connected 2-regular simple graphs with girth exactly g: A185013 (g=3), A185014 (g=4), A185015 (g=5), A185016 (g=6), A185017 (g=7), A185018 (g=8). Sequence in context: A111412 A080111 A204545 * A014034 A014059 A015934 Adjacent sequences:  A185113 A185114 A185115 * A185117 A185118 A185119 KEYWORD nonn,easy AUTHOR Jason Kimberley, Jan 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 14:27 EDT 2019. Contains 322310 sequences. (Running on oeis4.)