login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186716 Irregular triangle C(n,k): the number of connected k-regular graphs on n vertices having girth at least six. 12
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 5, 0, 0, 1, 0, 0, 0, 1, 32, 0, 0, 1, 0, 0, 0, 1, 385, 0, 0, 1, 0, 0, 0, 1, 7574, 0, 0, 1, 0, 0, 0, 1, 181227, 1, 0, 0, 1, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,53

COMMENTS

Other than the first two rows, each row begins with 0, 0, 1.

REFERENCES

M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146.

LINKS

Jason Kimberley, Rows n = 1..37 of triangle, flattened

House of Graphs, Cubic graphs

Jason Kimberley, Connected regular graphs with girth at least 6

Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g

M. Meringer, Tables of Regular Graphs

M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (2) (1999) 137-146.

EXAMPLE

1;

0, 1;

0, 0;

0, 0;

0, 0;

0, 0, 1;

0, 0, 1;

0, 0, 1;

0, 0, 1;

0, 0, 1;

0, 0, 1;

0, 0, 1;

0, 0, 1;

0, 0, 1, 1;

0, 0, 1, 0;

0, 0, 1, 1;

0, 0, 1, 0;

0, 0, 1, 5;

0, 0, 1, 0;

0, 0, 1, 32;

0, 0, 1, 0;

0, 0, 1, 385;

0, 0, 1, 0;

0, 0, 1, 7574;

0, 0, 1, 0;

0, 0, 1, 181227, 1;

0, 0, 1, 0, 0;

0, 0, 1, 4624501, 1;

0, 0, 1, 0, 0;

0, 0, 1, 122090544, 4;

0, 0, 1, 0, 0;

0, 0, 1, 3328929954, 19;

0, 0, 1, 0, 0;

0, 0, 1, 93990692595, 1272;

0, 0, 1, 0, 25;

0, 0, 1, 2754222605376, 494031;

0, 0, 1, 0, 13504;

CROSSREFS

Connected k-regular simple graphs with girth at least 6: A186726 (any k), this sequence (triangle); specific k: A185116 (k=2), A014374 (k=3), A058348 (k=4).

Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth at least g: A068934 (g=3), A186714 (g=4), A186715 (g=5), this sequence (g=6), A186717 (g=7), A186718 (g=8), A186719 (g=9).

Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth exactly g: A186733 (g=3), A186734 (g=4).

Sequence in context: A294393 A047754 A048682 * A171915 A287703 A316480

Adjacent sequences:  A186713 A186714 A186715 * A186717 A186718 A186719

KEYWORD

nonn,hard,tabf

AUTHOR

Jason Kimberley, Nov 23 2011

EXTENSIONS

C(36,3) from House of Graphs via Jason Kimberley, May 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 10:09 EST 2019. Contains 329334 sequences. (Running on oeis4.)