OFFSET
1,53
COMMENTS
Other than the first two rows, each row begins with 0, 0, 1.
REFERENCES
M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146.
LINKS
Jason Kimberley, Rows n = 1..37 of triangle, flattened
House of Graphs, Cubic graphs
Jason Kimberley, Connected regular graphs with girth at least 6
Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
M. Meringer, Tables of Regular Graphs
M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (2) (1999) 137-146.
EXAMPLE
1;
0, 1;
0, 0;
0, 0;
0, 0;
0, 0, 1;
0, 0, 1;
0, 0, 1;
0, 0, 1;
0, 0, 1;
0, 0, 1;
0, 0, 1;
0, 0, 1;
0, 0, 1, 1;
0, 0, 1, 0;
0, 0, 1, 1;
0, 0, 1, 0;
0, 0, 1, 5;
0, 0, 1, 0;
0, 0, 1, 32;
0, 0, 1, 0;
0, 0, 1, 385;
0, 0, 1, 0;
0, 0, 1, 7574;
0, 0, 1, 0;
0, 0, 1, 181227, 1;
0, 0, 1, 0, 0;
0, 0, 1, 4624501, 1;
0, 0, 1, 0, 0;
0, 0, 1, 122090544, 4;
0, 0, 1, 0, 0;
0, 0, 1, 3328929954, 19;
0, 0, 1, 0, 0;
0, 0, 1, 93990692595, 1272;
0, 0, 1, 0, 25;
0, 0, 1, 2754222605376, 494031;
0, 0, 1, 0, 13504;
CROSSREFS
Connected k-regular simple graphs with girth at least 6: A186726 (any k), this sequence (triangle); specific k: A185116 (k=2), A014374 (k=3), A058348 (k=4).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth at least g: A068934 (g=3), A186714 (g=4), A186715 (g=5), this sequence (g=6), A186717 (g=7), A186718 (g=8), A186719 (g=9).
KEYWORD
nonn,hard,tabf
AUTHOR
Jason Kimberley, Nov 23 2011
EXTENSIONS
C(36,3) from House of Graphs via Jason Kimberley, May 21 2017
STATUS
approved