login
A185118
Number of connected 2-regular simple graphs on n vertices with girth at least 8.
12
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0
COMMENTS
Decimal expansion of 90000001/900000000. - Elmo R. Oliveira, May 29 2024
FORMULA
a(0)=1; for 0 < n < 8 a(n)=0; for n >= 8, a(n)=1.
This sequence is the inverse Euler transformation of A185328.
G.f.: (x^8-x+1)/(1-x). - Elmo R. Oliveira, May 29 2024
EXAMPLE
The null graph is vacuously 2-regular and, being acyclic, has infinite girth.
There are no 2-regular simple graphs with 1 or 2 vertices.
The n-cycle has girth n.
CROSSREFS
2-regular simple graphs with girth at least 8: this sequence (connected), A185228 (disconnected), A185328 (not necessarily connected).
Connected k-regular simple graphs with girth at least 8: A186728 (any k), A186718 (triangle); specific k: this sequence (k=2), A014376 (k=3).
Connected 2-regular simple graphs with girth at least g: A179184 (g=3), A185114 (g=4), A185115 (g=5), A185116 (g=6), A185117 (g=7), this sequence (g=8), A185119 (g=9).
Connected 2-regular simple graphs with girth exactly g: A185013 (g=3), A185014 (g=4), A185015 (g=5), A185016 (g=6), A185017 (g=7), A185018 (g=8).
Sequence in context: A369001 A361024 A354037 * A240332 A156297 A373483
KEYWORD
nonn,easy
AUTHOR
Jason Kimberley, Jan 28 2011
STATUS
approved