This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179184 Number of connected 2-regular simple graphs with n vertices. 13
 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS All simple graphs have girth at least 3. Acyclic graphs have infinite girth. LINKS FORMULA a(0)=1; for 0=3 , a(n)=1. Proof: The null graph is vacuously 2-regular. There are no 2-regular simple graphs with 1 or 2 vertices. The n-cycle has girth n. QED. PROG (MAGMA) [1, 0, 0, 1^^97]; CROSSREFS 2-regular simple graphs (with girth at least 3): this sequence (connected), A165652 (disconnected), A008483 (not necessarily connected). 2-regular connected: this sequence (simple graphs), A000012 (multigraphs with loops allowed). Connected regular simple graphs: A005177 (any degree), A068934 (triangular array), specified degree k: this sequence (k=2), A002851 (k=3), A006820 (k=4),A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11). Connected 2-regular simple graphs with girth at least g: this sequence (g=3), A185115 (g=4), A185115 (g=5), A185116 (g=6), A185117 (g=7), A185118 (g=8), A185119 (g=9). Connected 2-regular simple graphs with girth exactly g: A185013 (g=3), A185014 (g=4), A185015 (g=5), A185016 (g=6), A185017 (g=7), A185018 (g=8). Sequence in context: A204435 A267155 A204445 * A154272 A240465 A240353 Adjacent sequences:  A179181 A179182 A179183 * A179185 A179186 A179187 KEYWORD nonn,easy AUTHOR Jason Kimberley, Jan 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 19:44 EDT 2019. Contains 323576 sequences. (Running on oeis4.)