login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185119 Number of connected 2-regular simple graphs on n vertices with girth at least 9. 10
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0

LINKS

Table of n, a(n) for n=0..101.

Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g

FORMULA

a(0)=1; for 0<n<9 a(n)=0; for n>=9 , a(n)=1.

Inverse Euler transformation of A185329.

EXAMPLE

The null graph is vacuously 2-regular and, being acyclic, has infinite girth.

There are no 2-regular simple graphs with 1 or 2 vertices.

The n-cycle has girth n.

CROSSREFS

2-regular simple graphs with girth at least 9: this sequence (connected), A185229 (disconnected), A185329 (not necessarily connected).

Connected k-regular simple graphs with girth at least 9: A186729 (all k), A186719 (triangular array), this sequence (k=2).

Connected 2-regular simple graphs with girth at least g: A179184 (g=3), A185114 (g=4), A185115 (g=5), A185116 (g=6), A185117 (g=7), A185118 (g=8), A185119 (g=9).

Connected 2-regular simple graphs with girth exactly g: A185013 (g=3), A185014 (g=4), A185015 (g=5), A185016 (g=6), A185017 (g=7), A185018 (g=8).

Sequence in context: A015899 A015494 A267142 * A280130 A304002 A126811

Adjacent sequences:  A185116 A185117 A185118 * A185120 A185121 A185122

KEYWORD

nonn,easy

AUTHOR

Jason Kimberley, Jan 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 12:33 EST 2020. Contains 332279 sequences. (Running on oeis4.)