|
|
A184951
|
|
Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth at least g.
|
|
7
|
|
|
1, 3, 60, 1, 7848, 1, 3459383, 7, 2585136675, 388, 2807105250897, 406824
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,2
|
|
COMMENTS
|
The first column is for girth at least 3. The row length sequence starts: 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4. The row length is incremented to g-2 when 2n reaches A054760(5,g).
|
|
LINKS
|
Table of n, a(n) for n=3..14.
Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
|
|
EXAMPLE
|
1;
3;
60, 1;
7848, 1;
3459383, 7;
2585136675, 388;
2807105250897, 406824;
|
|
CROSSREFS
|
Connected 5-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A006821 (g=3), A058275 (g=4), A205295 (g=5).
Connected 5-regular simple graphs with girth exactly g: A184950 (triangle); chosen g: A184953 (g=3), A184954 (g=4), A184955 (g=5).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), A184941 (k=4), this sequence (k=5), A184961 (k=6), A184971 (k=7), A184981 (k=8).
Sequence in context: A215609 A201184 A046024 * A081853 A183286 A195560
Adjacent sequences: A184948 A184949 A184950 * A184952 A184953 A184954
|
|
KEYWORD
|
nonn,hard,more,tabf
|
|
AUTHOR
|
Jason Kimberley, Jan 10 2012
|
|
EXTENSIONS
|
a(14) from Jason Kimberley, Dec 26 2012
|
|
STATUS
|
approved
|
|
|
|