This site is supported by donations to The OEIS Foundation.
User:Jason Kimberley/D k-reg girth eq g index
From OeisWiki
girth | C | D | E |
Cge | Dge | Ege | |
Ceq | Deq | Eeq |
Index of sequences counting disconnected k-regular simple graphs with girth exactly g
A210710 | lost :-( | A185010 | A185020 | A185030 | A185040 | A185050 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
\ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
A210703 | A210713 | 3 | A000004 | A000004 | A210723 | A185033 | A185043 | A185053 | A185063 | ||
A210704 | A210714 | 4 | A000004 | A000004 | A185024 | A185034 | A185044 | ||||
A210705 | A210715 | 5 | A000004 | A000004 | A185025 | A185035 | |||||
A210706 | A210716 | 6 | A000004 | A000004 | A185026 | A185036 | |||||
A210717 | 7 | A000004 | A000004 | A185027 | A185037 | ||||||
A210718 | 8 | A000004 | A000004 | A185028 | |||||||
9 | A000004 | A000004 | A185029 |
Notice that each sequence above is not the disconnected Euler transformation of the corresponding sequence counting connected k-regular simple graphs with girth exactly g: a disconnected graph with girth exactly g need only have one component with girth exactly g; the other component(s) only need have girth at least g.