The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014371 Number of trivalent connected simple graphs with 2n nodes and girth at least 4. 27
 1, 0, 0, 1, 2, 6, 22, 110, 792, 7805, 97546, 1435720, 23780814, 432757568, 8542471494, 181492137812, 4127077143862 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The null graph on 0 vertices is vacuously connected and 3-regular; since it is acyclic, it has infinite girth. [Jason Kimberley, Jan 29 2011] REFERENCES CRC Handbook of Combinatorial Designs, 1996, p. 647. LINKS G. Brinkmann, J. Goedgebeur and B. D. McKay, Generation of Cubic graphs, Discrete Mathematics and Theoretical Computer Science, 13 (2) (2011), 69-80. (hal-00990486) House of Graphs, Cubic graphs. Jason Kimberley, Connected regular graphs with girth at least 4 M. Meringer, Tables of Regular Graphs. M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (2) (1999) 137-146. MATHEMATICA A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {_, _}][[All, 2]]]; A002851 = A@002851; A006923 = A@006923; a[n_] := A002851[[n + 1]] - A006923[[n + 1]]; a /@ Range[0, 16] (* Jean-François Alcover, Jan 27 2020 *) CROSSREFS Contribution from Jason Kimberley, Jun 28 2010 and Jan 29 2011: (Start) 3-regular simple graphs with girth at least 4: this sequence (connected), A185234 (disconnected), A185334 (not necessarily connected). Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), this sequence (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), A181154 (k=8), A181170 (k=9). Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), this sequence (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8). Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End) Sequence in context: A129535 A216720 A290279 * A111280 A095817 A101042 Adjacent sequences:  A014368 A014369 A014370 * A014372 A014373 A014374 KEYWORD nonn,nice,more,hard AUTHOR EXTENSIONS Terms a(14) and a(15) appended, from running Meringer's GENREG for 4.2 and 93.2 processor days at U. Newcastle, by Jason Kimberley on Jun 28 2010. a(16), from House of Graphs, by Jan Goedgebeur et al., added by Jason Kimberley, Feb 15 2011] STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 4 01:48 EDT 2020. Contains 335436 sequences. (Running on oeis4.)