This site is supported by donations to The OEIS Foundation.

User:Jason Kimberley/A068933

From OeisWiki
Jump to: navigation, search

A068933

Triangular array D(n,r) that counts the isomorphism classes of disconnected r-regular simple graphs on n vertices.

C D E

Triangle

For odd , by the handshaking lemma, there are no -regular graphs with an odd number of vertices. So, for odd , the column sequences count disconnected -regular simple graphs on vertices.

A068932 A157928 A157928 A165652 A165653 A033483 A165655 A165656 A165877 A165878
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
0 1
1 2 1
1 3 1
2 4 1 1
1 5 1 0
3 6 1 1 1
2 7 1 0 1
5 8 1 1 2 1
4 9 1 0 3 0
9 10 1 1 4 2 1
7 11 1 0 5 0 1
23 12 1 1 8 9 3 1
18 13 1 0 9 0 8 0
74 14 1 1 12 31 25 3 1
106 15 1 0 16 0 88 0 1
619 16 1 1 20 147 378 66 5 1
2076 17 1 0 24 0 2026 0 25 0
22526 18 1 1 32 809 13351 8029 297 5 1
112834 19 1 0 38 0 104595 0 8199 0 1
4799825 20 1 1 48 5855 930586 3484760 377004 1562 7 1
31138965 21 1 0 59 0 9124662 0 22014143 0 100 0
4207943011 22 1 1 72 54477 96699987 2595985770 1493574756 21617036 10901 9 1
115979718015 23 1 0 87 0 1095469608 0 114880777582 0 3470736 0 1
13482672647959 24 1 1 109 633057 13175272208 2815099031417 9919463450855 733460349818 1473822243 88238 11 1
25 1 0 129 0 167460699184 0 0 734843169811 0 550 0
26 1 1 157 8724874 2241578965849 113315027550 806174 13 1
27 1 0 190 0 31510542635443 0 0 0 2585947720 0 1
28 1 1 229 137047391 464047929509794 9802278927562 8037887 18 1
29 1 0 272 0 7143991172244290 0 0 0 0 4224 0
30 1 1 330 2391169355 114749135506381940 86228020 21 1
31 1 0 390 0 1919658575933845129 0 0 0 0 2807191554105 0 1
32 1 1 467 45626910415 33393712487076999918 985884104 26 1
33 1 0 555 0 603152722419661386031 0 0 0 0 0 42135 0
34 1 1 659 942659626031 11946634677 33 1
35 1 0 778 0 0 0 0 0 0 0 1
36 1 1 926 20937539944549 152808994328 40 1
37 1 0 1086 0 0 0 0 0 0 0 516383 0
38 1 1 1283 497209670658529 2056701656260 49 1
39 1 0 1509 0 0 0 0 0 0 0 0 1
40 1 1 1774 12566853576025106 61 1
41 1 0 2074 0 0 0 0 0 0 0 0 7373984 0
42 1 1 2437 336749273734805530 73 1
43 1 0 2841 0 0 0 0 0 0 0 0 0 1
44 1 9534909974420181226 89 1
45 1 0 0 0 0 0 0 0 0 0 0 118573680 0
46 1 110 1
47 1 0 0 0 0 0 0 0 0 0 0 0 1
48 1 131 1
49 1 0 0 0 0 0 0 0 0 0 0 0 2103205868 0
50 1 158 1
51 1 0 0 0 0 0 0 0 0 0 0 0 0 1
52 1 192 1
53 1 0 0 0 0 0 0 0 0 0 0 0 0 40634185593 0
54 1 230 1
55 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
56 1 274 1
57 1 0 0 0 0 0 0 0 0 0 0 0 0 0 847871397697 0
58 1 331 1
59 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
60 1 392 1
61 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18987149095396 0
62 1 468 1
63 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
64 1 557 1
65 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 454032821689310 0
66 1 660 1
67 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
68 1 780 1
69 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11544329612486760 0
70 1 927 1
71 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
72 1 1088 1
73 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 310964453836199398 0
74 1 1284 1
75 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
76 1 1511 1
77 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8845303172513782781 0
78 1 1775 1
79 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
80 1 1


Diagonals

  • A12.
  • A12.
  • A184324(k)
=A8483, for .
=A040001(k)+A165652(k+3), for .
Proof:,
where =triangular numbers.
We have
  • ,
  • A8483, and
  • .
(note that and .)
  • A184325(k)
=A051031(2k+4,3) + A051031(2k+3,2)
=A005638(k+2) + A008483(2k+3).
  • A184326(k)
A217;
A217, for large enough ;
A217;
= E(k+5,4) + E(k+4,3) + A217(E(k+3,2));
= A033301(k+5) + ((k+1) mod 2).A005638(k div 2 + 2) + A217(A008483(k+3));