This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184325 The number of disconnected 2k-regular simple graphs on 4k+5 vertices. 2
 1, 3, 8, 25, 100, 550, 4224, 42135, 516383, 7373984, 118573680, 2103205868, 40634185593, 847871397697, 18987149095396, 454032821689310, 11544329612486760, 310964453836199398, 8845303172513782781 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(0)=1. For n > 0, a(n) = A051031(2k+4,3) + A051031(2k+3,2) = A005638(k+2) + A008483(2k+3). Proof: Let C=A068934, D=A068933, and E=A051031. Now a(n) = D(4k+5,2k) = C(2k+1, 2k) C(2k+4,2k) + C(2k+2,2k) C(2k+3,2k), from the disconnected Euler transform. For n > 1, D(2k+1,2k) = D(2k+2,2k) = D(2k+3,2k) = D(2k+4,2k) = 0. Therefore, a(n) = E(2k+1, 2k) E(2k+4,2k) + E(2k+2,2k) E(2k+3,2k) = E(2k+1,0) E(2k+4,3) + E(2k+2,1) E(2k+3,2). Note that E(2k+1,0) = E(2k+2,1) = 1. Checking a(1) = E(6,3) + E(5,2), QED. EXAMPLE The a(0)=1 graph is 5K_1. The a(1)=3 graphs are 3C_3, C_3+C_6, and C_4+C_5. CROSSREFS This sequence is the (even indices of the) fourth highest diagonal of D=A068933: that is a(n) = D(4k+5, 2k). Cf. A184324(k) = D(2k+4, k) and A184326(k) = D(2k+6, k). Sequence in context: A024430 A182927 A012408 * A051403 A004205 A268114 Adjacent sequences:  A184322 A184323 A184324 * A184326 A184327 A184328 KEYWORD nonn AUTHOR Jason Kimberley, Jan 11 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 19:11 EDT 2019. Contains 324222 sequences. (Running on oeis4.)