

A186714


Triangular array C(n, k) = number of connected kregular graphs, having girth at least 4, with n nodes, 0 <= k <= n div 2.


19



1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 6, 2, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 22, 12, 1, 1, 0, 0, 1, 0, 31, 0, 0, 0, 0, 1, 110, 220, 7, 1, 1, 0, 0, 1, 0, 1606, 0, 1, 0, 0, 0, 1, 792, 16828, 388, 9, 1, 1, 0, 0, 1, 0, 193900, 0, 6, 0, 0, 0, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,23


LINKS

Table of n, a(n) for n=1..92.
Jason Kimberley, Connected regular graphs with girth at least 4
Jason Kimberley, Index of sequences counting connected kregular simple graphs with girth at least g


EXAMPLE

01: 1;
02: 0,1;
03: 0,0;
04: 0,0,1;
05: 0,0,1;
06: 0,0,1,1;
07: 0,0,1,0;
08: 0,0,1,2,1;
09: 0,0,1,0,0;
10: 0,0,1,6,2,1;
11: 0,0,1,0,2,0;
12: 0,0,1,22,12,1,1;
13: 0,0,1,0,31,0,0;
14: 0,0,1,110,220,7,1,1;
15: 0,0,1,0,1606,0,1,0;
16: 0,0,1,792,16828,388,9,1,1;
17: 0,0,1,0,193900,0,6,0,0;
18: 0,0,1,7805,2452818,406824,267,8,1,1;
19: 0,0,1,0,32670330,0,3727,0,0,0;
20: 0,0,1,97546,456028474,1125022325,483012,741,13,1,1;
21: 0,0,1,0,6636066099,0,69823723,0,1,0,0;
22: 0,0,1,1435720,100135577747,3813549359274,14836130862,2887493,?,14,1,1;
23: 0,0,1,0,1582718912968,0,?,0,?,0,0;


CROSSREFS

The sum of the nth row is A186724(n).
Connected kregular simple graphs with girth at least 4: A186724 (any k), this sequence (triangle); specified degree k: A185114 (k=2), A014371 (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), A181154 (k=8), A181170 (k=9).
Triangular arrays C(n,k) counting connected simple kregular graphs on n vertices with girth *at least* g: A068934 (g=3), this sequence (g=4), A186715 (g=5), A186716 (g=6), A186717 (g=7), A186718 (g=8), A186719 (g=9).
Triangular arrays C(n,k) counting connected simple kregular graphs on n vertices with girth *exactly* g: A186733 (g=3), A186734 (g=4).
Sequence in context: A319080 A025435 A304685 * A160382 A081221 A280827
Adjacent sequences: A186711 A186712 A186713 * A186715 A186716 A186717


KEYWORD

nonn,tabf,hard


AUTHOR

Jason Kimberley, Sep to Dec 2011.


STATUS

approved



