

A026798


Number of partitions of n in which the least part is 5.


17



1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 13, 15, 18, 21, 26, 30, 36, 42, 50, 58, 70, 80, 95, 110, 129, 150, 176, 202, 236, 272, 317, 364, 423, 484, 560, 643, 740, 847, 975, 1112, 1277, 1456, 1666, 1897, 2168
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,16


COMMENTS

Also the number of not necessarily connected 2regular simple graphs with girth exactly 5.  Jason Kimberley, Nov 11 2011
Such partitions of n+5 correspond to A185325 partitions (parts >=5) of n by removing a single part of size 5.  Jason Kimberley, Nov 11 2011


LINKS

Table of n, a(n) for n=0..59.
Jason Kimberley, Index of sequences counting not necessarily connected kregular simple graphs with girth exactly g


FORMULA

G.f.: x^5 * Product 1/(1x^m); m=5..inf.
a(n+5) is given by p(n)p(n1)p(n2)+2p(n5)p(n8)p(n9)+p(n10)where p(n)=A000041(n). [From Shanzhen Gao, Oct 28 2010] [sign of 10 and offset of formula corrected by Jason Kimberley, Nov 11 2011]


MAPLE

ZL := [ B, {B=Set(Set(Z, card>=5))}, unlabeled ]: seq(combstruct[count](ZL, size=n), n=0..54);  Zerinvary Lajos, Mar 13 2007


MATHEMATICA

f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n  k, k]]]]; Table[ f[n, 5], {n, 50}] (* Robert G. Wilson v *)


CROSSREFS

Not necessarily connected 2regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1  multigraphs with loops allowed), A002865 (g=2  multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2  multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), this sequence (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).  Jason Kimberley, Nov 11 2011
Sequence in context: A096749 A036821 A237980 * A185325 A125890 A067661
Adjacent sequences: A026795 A026796 A026797 * A026799 A026800 A026801


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling


STATUS

approved



