login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: 1 0 seq:-1 0 seq:-5 0 seq:-28 0 seq:-165 0
(Hint: to search for an exact subsequence, use commas to separate the numbers.)
Displaying 1-10 of 651 results found. page 1 2 3 4 5 6 7 8 9 10 ... 66
     Sort: relevance | references | number | modified | created      Format: long | short | data
A214292 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k), 0 < k < n with T(n,0) = n and T(n,n) = -n. +120
32
0, 1, -1, 2, 0, -2, 3, 2, -2, -3, 4, 5, 0, -5, -4, 5, 9, 5, -5, -9, -5, 6, 14, 14, 0, -14, -14, -6, 7, 20, 28, 14, -14, -28, -20, -7, 8, 27, 48, 42, 0, -42, -48, -27, -8, 9, 35, 75, 90, 42, -42, -90, -75, -35, -9, 10, 44, 110, 165, 132, 0, -132, -165, -110, -44, -10 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
T(n,k) = A007318(n+1,k+1) - A007318(n+1,k), 0<=k<=n, i.e. first differences of rows in Pascal's triangle;
T(n,k) = -T(n,k);
row sums and central terms equal 0, cf. A000004;
sum of positive elements of n-th row = A014495(n+1);
T(n,0) = n;
T(n,1) = A000096(n-2) for n > 1; T(n,1) = - A080956(n) for n > 0;
T(n,2) = A005586(n-4) for n > 3; T(n,2) = A129936(n-2);
T(n,3) = A005587(n-6) for n > 5;
T(n,4) = A005557(n-9) for n > 8;
T(n,5) = A064059(n-11) for n > 10;
T(n,6) = A064061(n-13) for n > 12;
T(n,7) = A124087(n) for n > 14;
T(n,8) = A124088(n) for n > 16;
T(2*n+1,n) = T(2*n+2,n) = A000108(n+1), Catalan numbers;
T(2*n+3,n) = A000245(n+2);
T(2*n+4,n) = A002057(n+1);
T(2*n+5,n) = A000344(n+3);
T(2*n+6,n) = A003517(n+3);
T(2*n+7,n) = A000588(n+4);
T(2*n+8,n) = A003518(n+4);
T(2*n+9,n) = A001392(n+5);
T(2*n+10,n) = A003519(n+5);
T(2*n+11,n) = A000589(n+6);
T(2*n+12,n) = A090749(n+6);
T(2*n+13,n) = A000590(n+7).
LINKS
EXAMPLE
The triangle begins:
. 0: 0
. 1: 1 -1
. 2: 2 0 -2
. 3: 3 2 -2 -3
. 4: 4 5 0 -5 -4
. 5: 5 9 5 -5 -9 -5
. 6: 6 14 14 0 -14 -14 -6
. 7: 7 20 28 14 -14 -28 -20 -7
. 8: 8 27 48 42 0 -42 -48 -27 -8
. 9: 9 35 75 90 42 -42 -90 -75 -35 -9
. 10: 10 44 110 165 132 0 -132 -165 -110 -44 -10
. 11: 11 54 154 275 297 132 -132 -297 -275 -154 -54 -11 .
MATHEMATICA
row[n_] := Table[Binomial[n, k], {k, 0, n}] // Differences;
T[n_, k_] := row[n + 1][[k + 1]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 31 2018 *)
PROG
(Haskell)
a214292 n k = a214292_tabl !! n !! k
a214292_row n = a214292_tabl !! n
a214292_tabl = map diff $ tail a007318_tabl
where diff row = zipWith (-) (tail row) row
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Reinhard Zumkeller, Jul 12 2012
STATUS
approved
A112467 Riordan array ((1-2x)/(1-x), x/(1-x)). +120
24
1, -1, 1, -1, 0, 1, -1, -1, 1, 1, -1, -2, 0, 2, 1, -1, -3, -2, 2, 3, 1, -1, -4, -5, 0, 5, 4, 1, -1, -5, -9, -5, 5, 9, 5, 1, -1, -6, -14, -14, 0, 14, 14, 6, 1, -1, -7, -20, -28, -14, 14, 28, 20, 7, 1, -1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1, -1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1, -1, -10, -44, -110, -165, -132, 0, 132, 165, 110 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,12
COMMENTS
Row sums are A000007. Diagonal sums are -F(n-2). Inverse is A112468. T(2n,n)=0.
(-1,1)-Pascal triangle. - Philippe Deléham, Aug 07 2006
Apart from initial term, same as A008482. - Philippe Deléham, Nov 07 2006
Each column equals the cumulative sum of the previous column. - Mats Granvik, Mar 15 2010
Reading along antidiagonals generates in essence rows of A192174. - Paul Curtz, Oct 02 2011
Triangle T(n,k), read by rows, given by (-1,2,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2011
LINKS
Elena Barcucci, Antonio Bernini, Stefano Bilotta, and Renzo Pinzani, Restricting Dyck Paths and 312-avoiding Permutations, arXiv:2307.02837 [math.CO], 2023. Mentions this sequence.
Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
Emeric Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.
D. Foata and G.-N. Han, The doubloon polynomial triangle, Ram. J. 23 (2010), 107-126.
Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965. [Mentions application to design of antenna arrays. Annotated scan.]
FORMULA
Number triangle T(n, k) = binomial(n, n-k) - 2*binomial(n-1, n-k-1).
Sum_{k=0..n} T(n, k)*x^k = (x-1)*(x+1)^(n-1). - Philippe Deléham, Oct 03 2005
T(n,k) = ((2*k-n)/n)*binomial(n, k), with T(0,0)=1. - Roger L. Bagula, Feb 16 2009; modified by G. C. Greubel, Dec 04 2019
T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(1,0)=-1, T(n,k)=0 for k>n or for n<0. - Philippe Deléham, Nov 01 2011
G.f.: (1-2x)/(1-(1+y)*x). - Philippe Deléham, Dec 15 2011
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A133494(n), A081294(n), A005053(n), A067411(n), A199661(n), A083233(n) for x = 1, 2, 3, 4, 5, 6, 7, respectively. - Philippe Deléham, Dec 15 2011
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(-1 - x + x^2/2! + x^3/3!) = -1 - 2*x - 2*x^2/2! + 5*x^4/4! + 14*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014
Sum_{k=0..n} T(n,k) = 0^n = A000007(n). - G. C. Greubel, Dec 04 2019
EXAMPLE
Triangle starts:
1;
-1, 1;
-1, 0, 1;
-1, -1, 1, 1;
-1, -2, 0, 2, 1;
-1, -3, -2, 2, 3, 1;
-1, -4, -5, 0, 5, 4, 1;
-1, -5, -9, -5, 5, 9, 5, 1;
-1, -6, -14, -14, 0, 14, 14, 6, 1;
-1, -7, -20, -28, -14, 14, 28, 20, 7, 1;
-1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1;
-1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1;
...
From Paul Barry, Apr 08 2011: (Start)
Production matrix begins:
1, 1,
-2, -1, 1,
2, 0, -1, 1,
-2, 0, 0, -1, 1,
2, 0, 0, 0, -1, 1,
-2, 0, 0, 0, 0, -1, 1,
2, 0, 0, 0, 0, 0, -1, 1
... (End)
MAPLE
seq(seq( `if`(n=0, 1, (2*k-n)*binomial(n, k)/n), k=0..n), n=0..10); # G. C. Greubel, Dec 04 2019
MATHEMATICA
T[n_, k_]= If[n==0, 1, ((2*k-n)/n)*Binomial[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Feb 16 2009; modified by G. C. Greubel, Dec 04 2019 *)
PROG
(PARI) T(n, k) = if(n==0, 1, (2*k-n)*binomial(n, k)/n ); \\ G. C. Greubel, Dec 04 2019
(Magma) [n eq 0 select 1 else (2*k-n)*Binomial(n, k)/n: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 04 2019
(Sage)
def T(n, k):
if (n==0): return 1
else: return (2*k-n)*binomial(n, k)/n
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 04 2019
CROSSREFS
Same first 3 rows as in A054525.
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Sep 06 2005
STATUS
approved
A097808 Riordan array ((1+2x)/(1+x)^2, 1/(1+x)) read by rows. +120
9
1, 0, 1, -1, -1, 1, 2, 0, -2, 1, -3, 2, 2, -3, 1, 4, -5, 0, 5, -4, 1, -5, 9, -5, -5, 9, -5, 1, 6, -14, 14, 0, -14, 14, -6, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 8, -27, 48, -42, 0, 42, -48, 27, -8, 1, -9, 35, -75, 90, -42, -42, 90, -75, 35, -9, 1, 10, -44, 110, -165, 132, 0, -132, 165, -110, 44, -10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,7
COMMENTS
Inverse of A059260. Row sums are inverse binomial transform of A040000, with g.f. (1+2x)/(1+x). Diagonal sums are (-1)^n(1-Fib(n)). A097808=B^(-1)*A097806, where B is the binomial matrix. B*A097808*B^(-1) is the inverse of A097805.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
FORMULA
Columns have g.f. (1+2x)/(1+x)^2(x/(1+x))^k.
T(n,k)=T(n-1,k-1)-3*T(n-1,k)+2*T(n-2,k-1)-3*T(n-2,k)+T(n-3,k-1)-T(n-3,k), T(0,0)=T(1,1)=T(2,2)=1, T(1,0)=0, T(2,0)=T(2,1)=-1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 12 2014
T(0,0)=1, T(n,0)=(-1)^(n-1)*(n-1) for n>0, T(n,n)=1, T(n,k)=T(n-1,k-1)-T(n-1,k) for 0<k<n. - Philippe Deléham, Jan 12 2014
EXAMPLE
Rows begin
1;
0, 1;
-1, -1, 1;
2, 0, -2, 1;
-3, 2, 2, -3, 1;
4, -5, 0, 5, -4, 1;
-5, 9, -5, -5, 9, -5, 1;
6, -14, 14, 0, -14, 14, -6, 1;
-7, 20, -28, 14, 14, -28, 20, -7, 1;
8, -27, 48, -42, 0, 42, -48, 27, -8, 1;
MAPLE
T:= proc(n, k) option remember;
if k < 0 or k > n then return 0 fi;
procname (n-1, k-1)-3*procname(n-1, k)+2*procname(n-2, k-1)-3*procname(n-2, k)+
procname(n-3, k-1)-procname(n-3, k)
end proc:
T(0, 0):= 1: T(1, 1):= 1: T(2, 2):= 1:
T(1, 0):= 0: T(2, 0):= -1: T(2, 1):= -1:
seq(seq(T(n, k), k=0..n), n=0..12); # Robert Israel, Jul 16 2019
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
RiordanArray[(1 + 2 #)/(1 + #)^2&, #/(1 + #)&, 12] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Aug 25 2004
STATUS
approved
A153174 Coefficients of the eighth-order mock theta function U_1(q). +120
8
0, 1, 0, -1, 1, 2, -1, -2, 1, 3, -1, -4, 2, 5, -2, -6, 3, 8, -4, -9, 4, 11, -5, -14, 7, 17, -7, -20, 9, 24, -11, -28, 12, 33, -15, -39, 18, 46, -20, -53, 24, 62, -28, -72, 32, 83, -37, -96, 43, 110, -48, -126, 56, 145, -65, -165, 72, 188, -83, -214, 95, 243 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
LINKS
B. Gordon and R. J. McIntosh, Some eighth order mock theta functions, J. London Math. Soc. 62 (2000), 321-335.
FORMULA
G.f: Sum_{n >= 0} q^((n+1)^2)(1+q)(1+q^3)...(1+q^(2n-1))/((1+q^2)(1+q^6)...(1+q^(4n+2))).
PROG
(PARI) lista(nn) = {my(q = qq + O(qq^nn)); gf = sum(n = 0, nn, q^((n+1)^2) * prod(k = 1, n, 1 + q^(2*k-1)) / prod(k = 0, n, 1 + q^(4*k+2))); for (i=0, nn-1, print1(polcoeff(gf, i), ", "); ); } \\ Michel Marcus, Jun 18 2013
CROSSREFS
Other '8th-order' mock theta functions are at A153148, A153149, A153155, A153156, A153172, A153176, A153178.
KEYWORD
sign
AUTHOR
Jeremy Lovejoy, Dec 20 2008
EXTENSIONS
More terms from Michel Marcus, Feb 23 2015
STATUS
approved
A058511 McKay-Thompson series of class 15D for the Monster group. +120
4
1, -2, -1, 2, 1, 4, -6, -2, 2, 0, 10, -14, -5, 8, 4, 20, -28, -10, 14, 4, 39, -56, -20, 28, 10, 72, -100, -34, 46, 16, 128, -176, -61, 86, 30, 216, -294, -100, 134, 44, 355, -484, -165, 226, 79, 568, -770, -260, 350, 116, 894, -1208, -408, 552, 188, 1376, -1848, -620, 830, 276, 2087, -2800, -940 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
FORMULA
Expansion of q^(1/3) * (eta(q) / eta(q^5))^2 in powers of q.
Euler transform of period 5 sequence [ -2, -2, -2, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (45 t)) = 5 / f(t) where q = exp(2 Pi i t).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u - v^2) * (v - u^2) + 4*u*v.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + u*w + w^2 - v^2 * (u + w) - 5*v.
EXAMPLE
G.f. = 1 - 2*x - x^2 + 2*x^3 + x^4 + 4*x^5 - 6*x^6 - 2*x^7 + 2*x^8 + ...
T15D = 1/q - 2*q^2 - q^5 + 2*q^8 + q^11 + 4*q^14 - 6*q^17 - 2*q^20 + 2*q^23 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[ x^5])^2, {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^5 + A))^2, n))}; /* Michael Somos, Dec 17 2010 */
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved
A112466 Riordan array ((1+2x)/(1+x), x/(1+x)). +120
4
1, 1, 1, -1, 0, 1, 1, -1, -1, 1, -1, 2, 0, -2, 1, 1, -3, 2, 2, -3, 1, -1, 4, -5, 0, 5, -4, 1, 1, -5, 9, -5, -5, 9, -5, 1, -1, 6, -14, 14, 0, -14, 14, -6, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, -1, 8, -27, 48, -42, 0, 42, -48, 27, -8, 1, 1, -9, 35, -75, 90, -42, -42, 90, -75, 35, -9, 1, -1, 10, -44, 110, -165, 132, 0, -132, 165, -110, 44 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,12
COMMENTS
Row sums are (1,2,0,0,0,...).
Inverse is A112465.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 07 2006; corrected by Philippe Deléham, Dec 11 2008
Equals A097808 when the first column is removed. - Georg Fischer, Jul 26 2023
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
Emeric Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.
FORMULA
Number triangle T(n,k) = (-1)^(n-k)*(C(n, n-k) - 2*C(n-1, n-k-1)).
Sum_{k=0..floor(n/2)} T(n-k,k) = (-1)^(n+1)*Fibonacci(n-2).
T(2n,n) = 0.
Sum_{k=0..n} T(n,k)*x^k = (x+1)*(x-1)^(n-1), for n >= 1. - Philippe Deléham, Oct 03 2005
T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if n < 0 or if n < k, T(n,k) = T(n-1,k-1) - T(n-1,k) for n > 1. - Philippe Deléham, Nov 26 2006
G.f.: (1+2*x)/(1+x-x*y). - R. J. Mathar, Aug 11 2015
EXAMPLE
Triangle starts
1;
1, 1;
-1, 0, 1;
1, -1, -1, 1;
-1, 2, 0, -2, 1;
1, -3, 2, 2, -3, 1;
-1, 4, -5, 0, 5, -4, 1;
From Paul Barry, Apr 08 2011: (Start)
Production matrix begins
1, 1;
-2, -1, 1;
2, 0, -1, 1;
-2, 0, 0, -1, 1;
2, 0, 0, 0, -1, 1;
-2, 0, 0, 0, 0, -1, 1;
2, 0, 0, 0, 0, 0, -1, 1; (End)
MAPLE
seq(seq( (-1)^(n-k)*(2*binomial(n-1, k-1)-binomial(n, k)), k=0..n), n=0..10); # G. C. Greubel, Feb 19 2020
MATHEMATICA
{1}~Join~Table[(Binomial[n, n - k] - 2 Binomial[n - 1, n - k - 1])*(-1)^(n - k), {n, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 18 2020 *)
PROG
(PARI) T(n, k) = (-1)^(n-k)*(binomial(n, n-k) - 2*binomial(n-1, n-k-1)); \\ Michel Marcus, Feb 19 2020
CROSSREFS
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Sep 06 2005
STATUS
approved
A197419 Triangle with the numerator of the coefficient [x^k] of the second order Bernoulli polynomial B_n^(2)(x) in row n, column 0<=k<=n. +120
2
1, -1, 1, 5, -2, 1, -1, 5, -3, 1, 1, -2, 5, -4, 1, 1, 1, -5, 25, -5, 1, -5, 1, 3, -10, 25, -6, 1, -1, -5, 7, 7, -35, 35, -7, 1, 7, -4, -10, 28, 7, -28, 70, -8, 1, 3, 21, -6, -10, 21, 63, -42, 30, -9, 1, -15, 3, 21, -20, -25, 42, 21, -60, 75, -10, 1, -5, -15, 33, 77, -55, -55, 77, 33, -165, 275, -11, 1, 7601, -10, -45, 66, 231, -132, -110, 132, 99, -110, 55, -12, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
The a-th order Bernoulli polynomials are defined via the exponential generating function (t/(exp t -1))^a*exp(x*t) = sum_{n>=0} B_n^(a)(x) * t^n/n!. The current triangular array shows the coefficient [x^k] of B_n^(2)(x), i.e. the expansion coefficients in rising powers of the polynomial of x with a=2.
P(n,x) = 2*sum(m=0..n-1, binomial(n,m)*sum(k=1..n-m, stirling2(n-m,k) * stirling1(2+k,2)/((k+1)*(k+2))))*x^m+x^n. - Vladimir Kruchinin, Oct 23 2011]
LINKS
R. Dere, Y. Simsek, Bernoulli type polynomials on Umbral Algebra, arXiv:1110.1484 [math.CA]
FORMULA
T(n,m) = sum(2*C(n,m)*sum(k=1..n-m, stirling2(n-m,k)*stirling1(2+k,2)/ ((k+1)*(2+k)))), m<n, T(n,n)=1. - Vladimir Kruchinin, Oct 23 2011
EXAMPLE
The table of the coefficients is
1;
-1,1;
5/6,-2,1; 5/6-2x+x^2
-1/2,5/2,-3,1; -1/2+5x/2-3x^2+x^3
1/10,-2,5,-4,1;
1/6,1/2,-5,25/3,-5,1;
-5/42,1,3/2,-10,25/2,-6,1;
-1/6,-5/6,7/2,7/2,-35/2,35/2,-7,1;
7/30,-4/3,-10/3,28/3,7,-28,70/3,-8,1;
3/10,21/10,-6,-10,21,63/5,-42,30,-9,1;
-15/22,3,21/2,-20,-25,42,21,-60,75/2,-10,1;
-5/6,-15/2,33/2,77/2,-55,-55,77,33,-165/2,275/6,-11,1;
7601/2730,-10,-45,66,231/2,-132,-110,132,99/2,-110,55,-12,1;
MAPLE
A197419 := proc(n, k)
local a, Bt, Bnx, o , t, x;
a := 2 ;
Bt := (t/(exp(t)-1))^a*exp(x*t) ;
Bnx := n!*coeftayl(Bt, t=0, n) ;
coeftayl(Bnx, x=0, k) ;
numer(%) ;
end proc:
seq(seq(A197419(n, k), k=0..n), n=0..4) ; # print row by row
MATHEMATICA
t[n_, m_] := If [n == m, 1, 2*Binomial[n, m]*Sum[StirlingS2[n-m, k]*StirlingS1[2+k, 2]/((k+1)*(2+k)), {k, 1, n-m}]]; Table[t[n, m] // Numerator, {n, 0, 12}, {m, 0, n}] // Flatten (* Jean-François Alcover, Dec 12 2013, after Vladimir Kruchinin *)
PROG
(Maxima) T(n, m):=num(if n=m then 1 else 2*binomial(n, m)* sum(stirling2(n-m, k) *stirling1(2+k, 2)/ ((k+1)*(2+k)), k, 1, n-m)); [From Vladimir Kruchinin, Oct 23 2011]
CROSSREFS
Cf. A197420 (denominator), A100616, A100615 (column k=0).
KEYWORD
sign,tabl,frac
AUTHOR
R. J. Mathar, Oct 14 2011
STATUS
approved
A344503 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)^2*hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4). +120
1
1, 0, -1, 3, 0, -5, 15, 0, -28, 84, 0, -165, 495, 0, -1001, 3003, 0, -6188, 18564, 0, -38760, 116280, 0, -245157, 735471, 0, -1562275, 4686825, 0, -10015005, 30045015, 0, -64512240, 193536720, 0, -417225900, 1251677700, 0, -2707475148, 8122425444, 0, -17620076360 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Inverse binomial convolution of the Motzkin numbers.
LINKS
FORMULA
a(3*n) = binomial(3*n, n) (A005809).
a(3*n - 1) = -binomial(3*n - 1, n - 1) (A025174).
a(3*n - 2) = 0.
Conjecture D-finite with recurrence -18*(2*n+1) *(2*n-1) *(n+1) *a(n) +2*(-36*n^3+554*n^2-1128*n+27) *a(n-1) +6*(-12*n^3-188*n^2+1235*n-1618) *a(n-2) +9*(54*n^3-27*n^2-183*n+320) *a(n-3) +54*(n-3) *(9*n^2-125*n+75) *a(n-4) +81 *(n-3) *(n-4) *(6*n+127) *a(n-5)=0. - R. J. Mathar, Nov 02 2021
MAPLE
a := n -> add((-1)^(n - k)*binomial(n, k)^2*hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4), k = 0..n): seq(simplify(a(n)), n = 0..41);
CROSSREFS
Cf. A064189 (Motzkin numbers), A005809, A025174, A344502.
KEYWORD
sign
AUTHOR
Peter Luschny, May 23 2021
STATUS
approved
A126595 Triangle read by rows: T(0,0)=1; for n>=1, 0<=k<=n, T(n,k) is the coefficient of x^k in the characteristic polynomial (-x)^n+... of the n X n matrix M(n)S(n), where M(n) is the n X n matrix with 0's on the diagonal and 1's elsewhere and S(n) is the n X n matrix whose (i,j) term is 0 for j=i, (-1)^(i+j) for i>j and (-1)^(i+j+1) for i<j. +120
0
1, 0, -1, -1, 0, 1, 0, -3, 0, -1, -3, 0, 2, 0, 1, 0, -5, 0, -10, 0, -1, -5, 0, -5, 0, 9, 0, 1, 0, -7, 0, -35, 0, -21, 0, -1, -7, 0, -28, 0, 14, 0, 20, 0, 1, 0, -9, 0, -84, 0, -126, 0, -36, 0, -1, -9, 0, -75, 0, -42, 0, 90, 0, 35, 0, 1, 0, -11, 0, -165, 0, -462, 0, -330, 0, -55, 0, -1, -11, 0, -154, 0, -297, 0, 132, 0, 275, 0, 54, 0, 1, 0, -13, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Sum of terms in row 2n (n>=1) is 0. Sum of the absolute values of the terms in row 2n is C(2n,n) (A000984). All terms in row 2n-1 are nonpositive. Their sum is -4^(n-1). M(2n-1)S(2n-1)=-S(2n-1)
LINKS
EXAMPLE
M(4)=[0,1,1,1/1,0,1,1/1,1,0,1/1,1,1,0], S(4)=[0,1,-1,1/-1,0,1,-1/1,-1,0,1/-1,1,-1,0], M(4)S(4)=[ -1,0,0,0/0,1,-2,2/-2,2,-1,0/0,0,0,1]; char. poly. of M(4)S(4) is x^4 + 2x^2 - 3, yielding row 4 of the triangle: -3,0,2,0,1.
Triangle starts:
1;
0,-1;
-1,0,1;
0,-3,0,-1;
-3,0,2,0,1;
0,-5,0,-10,0,-1
MAPLE
with(linalg): m:=proc(i, j) if i=j then 0 else 1 fi end: s:=proc(i, j) if i=j then 0 elif i>j then (-1)^(i+j) else (-1)^(i+j+1) fi end: for n from 1 to 14 do f[n]:=(-1)^n*sort(expand(charpoly(multiply(matrix(n, n, m), matrix(n, n, s)), x))) od: 1; for n from 1 to 14 do seq(coeff(f[n], x, j), j=0..n) od; # yields sequence in triangular form
CROSSREFS
Cf. A000984.
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Jan 01 2007
EXTENSIONS
Edited by N. J. A. Sloane, Jan 07 2006
STATUS
approved
A099039 Riordan array (1,c(-x)), where c(x) = g.f. of Catalan numbers. +110
17
1, 0, 1, 0, -1, 1, 0, 2, -2, 1, 0, -5, 5, -3, 1, 0, 14, -14, 9, -4, 1, 0, -42, 42, -28, 14, -5, 1, 0, 132, -132, 90, -48, 20, -6, 1, 0, -429, 429, -297, 165, -75, 27, -7, 1, 0, 1430, -1430, 1001, -572, 275, -110, 35, -8, 1, 0, -4862, 4862, -3432, 2002, -1001, 429, -154, 44, -9, 1, 0, 16796, -16796, 11934, -7072, 3640, -1638 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Row sums are generalized Catalan numbers A064310. Diagonal sums are 0^n+(-1)^n*A030238(n-2). Inverse is A026729, as number triangle. Columns have g.f. (xc(-x))^k=((sqrt(1+4x)-1)/2)^k.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938. - Philippe Deléham, May 31 2005
LINKS
George Beck and Karl Dilcher, A Matrix Related to Stern Polynomials and the Prouhet-Thue-Morse Sequence, arXiv:2106.10400 [math.CO], 2021. See (2.10) p. 6.
F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
E. Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
A. Robertson, D. Saracino and D. Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002.
L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
FORMULA
T(n, k) = (-1)^(n+k)*binomial(2*n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0. - Philippe Deléham, May 31 2005
EXAMPLE
Rows begin {1}, {0,1}, {0,-1,1}, {0,2,-2,1}, {0,-5,5,-3,1}, ...
Triangle begins
1;
0, 1;
0, -1, 1;
0, 2, -2, 1;
0, -5, 5, -3, 1;
0, 14, -14, 9, -4, 1;
0, -42, 42, -28, 14, -5, 1;
0, 132, -132, 90, -48, 20, -6, 1;
0, -429, 429, -297, 165, -75, 27, -7, 1;
Production matrix is
0, 1,
0, -1, 1,
0, 1, -1, 1,
0, -1, 1, -1, 1,
0, 1, -1, 1, -1, 1,
0, -1, 1, -1, 1, -1, 1,
0, 1, -1, 1, -1, 1, -1, 1,
0, -1, 1, -1, 1, -1, 1, -1, 1,
0, 1, -1, 1, -1, 1, -1, 1, -1, 1
MATHEMATICA
T[n_, k_]:= If[n == 0 && k == 0, 1, If[n == 0 && k > 0, 0, (-1)^(n + k)*Binomial[2*n - k - 1, n - k]*k/n]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 31 2017 *)
PROG
(PARI) {T(n, k) = if(n == 0 && k == 0, 1, if(n == 0 && k > 0, 0, (-1)^(n + k)*binomial(2*n - k - 1, n - k)*k/n))};
for(n=0, 15, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 31 2017
CROSSREFS
The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
Cf. A106566 (unsigned version), A059365
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Sep 23 2004
STATUS
approved
page 1 2 3 4 5 6 7 8 9 10 ... 66

Search completed in 0.947 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 17:12 EDT 2024. Contains 374234 sequences. (Running on oeis4.)