login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,1,1,1,2,1,1,5,3,1
Displaying 1-10 of 21 results found. page 1 2 3
     Sort: relevance | references | number | modified | created      Format: long | short | data
A047884 Triangle of numbers a(n,k) = number of Young tableaux with n cells and k rows (1 <= k <= n); also number of self-inverse permutations on n letters in which the length of the longest scattered (i.e., not necessarily contiguous) increasing subsequence is k. +30
19
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 9, 11, 4, 1, 1, 19, 31, 19, 5, 1, 1, 34, 92, 69, 29, 6, 1, 1, 69, 253, 265, 127, 41, 7, 1, 1, 125, 709, 929, 583, 209, 55, 8, 1, 1, 251, 1936, 3356, 2446, 1106, 319, 71, 9, 1, 1, 461, 5336, 11626, 10484, 5323, 1904, 461, 89, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
REFERENCES
W. Fulton, Young Tableaux, Cambridge, 1997.
D. Stanton and D. White, Constructive Combinatorics, Springer, 1986.
LINKS
EXAMPLE
For n=3 the 4 tableaux are
1 2 3 . 1 2 . 1 3 . 1
. . . . 3 . . 2 . . 2
. . . . . . . . . . 3
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 5, 3, 1;
1, 9, 11, 4, 1;
1, 19, 31, 19, 5, 1;
1, 34, 92, 69, 29, 6, 1;
1, 69, 253, 265, 127, 41, 7, 1;
1, 125, 709, 929, 583, 209, 55, 8, 1;
1, 251, 1936, 3356, 2446, 1106, 319, 71, 9, 1;
1, 461, 5336, 11626, 10484, 5323, 1904, 461, 89, 10, 1;
...
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0 or i=1, (p->h(p)*x^`if`(p=[], 0, p[1]))
([l[], 1$n]), add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(g(n$2, [])):
seq(T(n), n=1..14); # Alois P. Heinz, Apr 16 2012, revised Mar 05 2014
MATHEMATICA
Table[ Plus@@( NumberOfTableaux/@ Reverse/@Union[ Sort/@(Compositions[ n-m, m ]+1) ]), {n, 12}, {m, n} ]
(* Second program: *)
h[l_] := With[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n== 0|| i==1, Function[p, h[p]*x^If[p == {}, 0, p[[1]] ] ] [ Join[l, Array[1&, n]]], Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][g[n, n, {}]];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz *)
CROSSREFS
Row sums give A000085.
Cf. A049400, A049401, and A178249 which imposes contiguity.
Columns k=1-10 give: A000012, A014495, A217323, A217324, A217325, A217326, A217327, A217328, A217321, A217322. - Alois P. Heinz, Oct 03 2012
a(2n,n) gives A267436.
KEYWORD
nonn,tabl,nice,easy
AUTHOR
EXTENSIONS
Definition amended ('scattered' added) by Wouter Meeussen, Dec 22 2010
STATUS
approved
A078920 Upper triangle of Catalan Number Wall. +30
14
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 14, 4, 1, 1, 42, 84, 30, 5, 1, 1, 132, 594, 330, 55, 6, 1, 1, 429, 4719, 4719, 1001, 91, 7, 1, 1, 1430, 40898, 81796, 26026, 2548, 140, 8, 1, 1, 4862, 379236, 1643356, 884884, 111384, 5712, 204, 9, 1, 1, 16796, 3711916, 37119160, 37119160, 6852768, 395352, 11628, 285, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
As square array: number of certain symmetric plane partitions, see Forrester/Gamburd paper.
Formatted as a square array, the column k gives the Hankel transform of the Catalan numbers (A000108) beginning at A000108(k); example: Hankel transform of [42, 132, 429, 1430, 4862, ...] is [42, 594, 4719, 26026, 111384, ...] (see A091962). - Philippe Deléham, Apr 12 2007
As square array T(n,k): number of all k-watermelons with a wall of length n. - Ralf Stephan, May 09 2007
Consider "Young tableaux with entries from the set {1,...,n}, strictly increasing in rows and not decreasing in columns. Note that usually the reverse convention between rows and columns is used." de Sainte-Catherine and Viennot (1986) proved that "the number b_{n,k} of such Young tableaux having only columns with an even number of elements and bounded by height p = 2*k" is given by b_{n,k} = Product_{1 <= i <= j <= n} (2*k + i + j)/(i + j)." It turns out that for the current array, T(n,k) = b(n-k,k) for n >= 0 and 0 <= k <= n. - Petros Hadjicostas, Sep 04 2019
As square array, b(k, n) = T(n+k-1, n) for k >= 1 and n >= 1 is the number of n-tuples P = (p_1, p_2, ..., p_n) of non-intersecting lattice paths that lie below the diagonal, such that each p_i starts at (i, i) and ends at (2n+k-i, 2n+k-i). (This is just a different way of looking at n-watermelons with a wall of length k since many of the steps of these paths are going to be fixed while the rest form an n-watermelon. See the Krattenthaler et al. paper.) Equivalently b(k, n) is the number of n-tuples (p_1, p_2, ..., p_n) of Dyck paths, each with 2k steps such that for every i (1 <= i <= n-1), p_i is included in p_{i+1}. A Dyck path p is said to be included in a Dyck path q if the height of path p after j steps is at most the height of path q after j steps, for all j (1 <= j <= 2k). - Farzan Byramji, Jun 17 2021
LINKS
R. Bacher, Matrices related to the Pascal triangle, arXiv:math/0109013 [math.CO], 2001.
M. de Sainte-Catherine and G. Viennot, Enumeration of certain Young tableaux with bounded height, in: G. Labelle and P. Leroux (eds), Combinatoire énumérative, Lecture Notes in Mathematics, vol. 1234, Springer, Berlin, Heidelberg, 1986, pp. 58-67.
P. J. Forrester and A. Gamburd, Counting formulas associated with some random matrix averages, arXiv:math/0503002 [math.CO], 2005.
P. J. Forrester and A. Gamburd, Counting formulas associated with some random matrix averages, J. Combin. Theory Ser. A 113(6) (2006), 934-951.
M. Fulmek, Asymptotics of the average height of 2-watermelons with a wall, arXiv:math/0607163 [math.CO], 2006.
M. Fulmek, Asymptotics of the average height of 2-watermelons with a wall, Electron. J. Combin. 14 (2007), R64.
C. Krattenthaler, A. J. Guttmann and X. G. Viennot, Vicious walkers, friendly walkers and Young tableaux: II. With a wall, J. Phys. A: Math. Gen. 33 (2000), 8835-8866.
Vincent Pilaud, Brick polytopes, lattice quotients, and Hopf algebras, arXiv:1505.07665 [math.CO], 2015.
Vincent Pilaud, Brick polytopes, lattice quotients, and Hopf algebras, J. Combin. Theory Ser. A 155 (2018), 418-457.
FORMULA
T(n,k) = Product_{i=1..n-k} Product_{j=i..n-k} (i+j+2*k)/(i+j). [corrected by Petros Hadjicostas, Jul 24 2019]
From G. C. Greubel, Dec 17 2021: (Start)
T(n, k) = Product_{j=0..k-1} binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j).
T(n, k) = ((n+1)!/(n-k+1)!)*Product_{j=0..k-1} Catalan(n-j)/binomial(n+j+1, n-j). (End)
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) starts as follows:
1;
1, 1;
1, 2, 1;
1, 5, 3, 1;
1, 14, 14, 4, 1;
1, 42, 84, 30, 5, 1;
1, 132, 594, 330, 55, 6, 1;
1, 429, 4719, 4719, 1001, 91, 7, 1;
1, 1430, 40898, 81796, 26026, 2548, 140, 8, 1;
1, 4862, 379236, 1643356, 884884, 111384, 5712, 204, 9, 1;
...
MAPLE
T:= (n, k)-> mul(mul((i+j+2*k)/(i+j), j=i..n-k), i=1..n-k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Sep 04 2019
MATHEMATICA
T[n_, k_] := Product[(2*i+1)!*(2*n-2*i)!/(n-i)!/(n+i+1)!, {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 28 2015, adapted from PARI *)
PROG
(PARI) T(n, k)=if(k<0 || k>n, 0, prod(i=0, k-1, (2*i+1)!*(2*n-2*i)!/(n-i)!/(n+i+1)!))
(PARI) {C(n)=if(n<0, 0, (2*n)!/n!/(n+1)!)}; T(n, k)=if(k<0 || k>n, 0, matdet(matrix(k, k, i, j, C(i+j-1+n-k))))
(Sage)
def A078920(n, k): return product( binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j) for j in (0..k-1) )
flattened([[A078920(n, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 17 2021
CROSSREFS
Diagonals are A000027, A000330, A006858.
T(2n,n) gives A358597.
Cf. A123352.
KEYWORD
easy,nonn,tabl
AUTHOR
Michael Somos, Dec 15 2002
EXTENSIONS
T(0,0) = 1 prepended by Petros Hadjicostas, Jul 24 2019
STATUS
approved
A055818 Triangle T read by rows: T(i,j) = R(i-j,j), where R(i,0) = R(0,i) = 1 for i >= 0, R(i,j) = Sum_{h=0..i-1} Sum_{m=0..j} R(h,m) for i >= 1, j >= 1. +30
13
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 11, 9, 4, 1, 1, 23, 24, 14, 5, 1, 1, 47, 60, 43, 20, 6, 1, 1, 95, 144, 122, 69, 27, 7, 1, 1, 191, 336, 328, 217, 103, 35, 8, 1, 1, 383, 768, 848, 640, 354, 146, 44, 9, 1, 1, 767, 1728, 2128, 1800, 1131, 543, 199, 54, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 3B.
EXAMPLE
Rows begins as:
1;
1, 1;
1, 2, 1;
1, 5, 3, 1;
1, 11, 9, 4, 1;
...
MAPLE
T:= proc(i, j) option remember;
if i=0 or j=0 then 1
else add(add(T(h, m), m=0..j), h=0..i-1)
fi; end:
seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Jan 21 2020
MATHEMATICA
T[i_, j_]:= T[i, j]= If[i==0 || j==0, 1, Sum[T[h, m], {h, 0, i-1}, {m, 0, j}]]; Table[T[n-k, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 21 2020 *)
PROG
(PARI) T(i, j) = if(i==0 || j==0, 1, sum(h=0, i-1, sum(m=0, j, T(h, m) )));
for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Jan 21 2020
(Magma)
function T(i, j)
if i eq 0 or j eq 0 then return 1;
else return (&+[(&+[T(h, m): m in [0..j]]): h in [0..i-1]]);
end if; return T; end function;
[T(n-k, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 21 2020
(Sage)
@CachedFunction
def T(i, j):
if (i==0 or j==0): return 1
else: return sum(sum(T(h, m) for m in (0..j)) for h in (0..i-1))
[[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 21 2020
(GAP)
T:= function(i, j)
if i=0 or j=0 then return 1;
else return Sum([0..i-1], h-> Sum([0..j], m-> T(h, m) ));
fi; end;
Flat(List([0..12], n-> List([0..n], k-> T(n-k, k) ))); # G. C. Greubel, Jan 21 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved
A124328 Triangle read by rows: T(n,k) is the number of ordered trees with n edges, with thinning limbs and with root of degree k (1<=k<=n). An ordered tree with thinning limbs is such that if a node has k children, all its children have at most k children. +30
8
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 10, 9, 4, 1, 1, 22, 25, 14, 5, 1, 1, 46, 69, 44, 20, 6, 1, 1, 101, 186, 137, 70, 27, 7, 1, 1, 220, 503, 416, 235, 104, 35, 8, 1, 1, 492, 1356, 1256, 766, 375, 147, 44, 9, 1, 1, 1104, 3663, 3760, 2465, 1296, 567, 200, 54, 10, 1, 1, 2515, 9907 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Row sums yield A124344. T(n,2) = A124329(n).
LINKS
FORMULA
The g.f. F[k]=F[k](z) of column k satisfies F[k]={F[k-1]^(1/(k-1) + zF[k]}^k; F[1]=z/(1-z).
Central terms are: T(2n-1,n) = A124889(n-1), T(2n,n) = A124891(n-1), for n>=1. - Paul D. Hanna, Nov 12 2006
EXAMPLE
Triangle starts:
1;
1,1;
1,2,1;
1,5,3,1;
1,10,9,4,1;
MATHEMATICA
t[n_, n_] = 1; t[n_, k_] /; n == k + 1 := t[n, k] = n - 1; t[n_, k_] := t[n, k] = Coefficient[(1 + x*Sum[ x^(r - 1)*Sum[ t[r, c], {c, 1, k }], {r, 1, n - k}] + x^n)^k, x, n - k ]; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 21 2013, after Paul D. Hanna *)
PROG
(PARI) {T(n, k)=if(n==k, 1, if(n==k+1, n-1, polcoeff( (1 + x*sum(r=1, n-k, x^(r-1)*sum(c=1, k, T(r, c)))+x*O(x^n))^k, n-k)))} - Paul D. Hanna, Nov 12 2006
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Nov 03 2006
EXTENSIONS
More terms from Paul D. Hanna, Nov 12 2006
STATUS
approved
A125800 Rectangular table where column k equals row sums of matrix power A078122^k, read by antidiagonals. +30
8
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 23, 12, 4, 1, 1, 239, 93, 22, 5, 1, 1, 5828, 1632, 238, 35, 6, 1, 1, 342383, 68457, 5827, 485, 51, 7, 1, 1, 50110484, 7112055, 342382, 15200, 861, 70, 8, 1, 1, 18757984046, 1879090014, 50110483, 1144664, 32856, 1393, 92, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Determinant of n X n upper left submatrix is 3^(n*(n-1)*(n-2)/6).
This table is related to partitions of numbers into powers of 3 (see A078122).
Triangle A078122 shifts left one column under matrix cube.
Column 1 is A078125, which equals row sums of A078122;
column 2 is A078124, which equals row sums of A078122^2.
LINKS
Robert Israel, Table of n, a(n) for n = 0..2484 (antidiagonals 0 to 69, flattened)
FORMULA
T(n,k) = T(n,k-1) + T(n-1,3*k) for n > 0, k > 0, with T(0,n)=T(n,0)=1 for n >= 0.
G.f. of row n is g_n(z) where g_{n+1}(z) = (1-z)^(-1)*Sum_{w^3=1} g_n(w*z^(1/3)) (the sum being over the cube roots of unity). - Robert Israel, Jun 02 2019
EXAMPLE
Recurrence T(n,k) = T(n,k-1) + T(n-1,3*k) is illustrated by:
T(3,3) = T(3,2) + T(2,9) = 93 + 145 = 238;
T(4,3) = T(4,2) + T(3,9) = 1632 + 4195 = 5827;
T(5,3) = T(5,2) + T(4,9) = 68457 + 273925 = 342382.
Rows of this table begin:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...;
1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, ...;
1, 23, 93, 238, 485, 861, 1393, 2108, 3033, 4195, 5621, ...;
1, 239, 1632, 5827, 15200, 32856, 62629, 109082, 177507, 273925,...;
1, 5828, 68457, 342382, 1144664, 3013980, 6769672, 13570796, ...;
1, 342383, 7112055, 50110483, 215155493, 690729981, 1828979530, ...;
1, 50110484, 1879090014, 18757984045, 103674882878, 406279238154,..;
1, 18757984046, 1287814075131, 18318289003447, 130648799730635, ...;
Triangle A078122 begins:
1;
1, 1;
1, 3, 1;
1, 12, 9, 1;
1, 93, 117, 27, 1;
1, 1632, 3033, 1080, 81, 1;
1, 68457, 177507, 86373, 9801, 243, 1; ...
where row sums form column 1 of this table A125790,
and column k of A078122 equals column 3^k - 1 of this table A125800.
Matrix square A078122^2 begins:
1;
2, 1;
5, 6, 1;
23, 51, 18, 1;
239, 861, 477, 54, 1;
5828, 32856, 25263, 4347, 162, 1; ...
where row sums form column 2 of this table A125790,
and column 0 of A078122^2 forms column 1 of this table A125790.
MAPLE
f[0]:= 1/(1-z):
S[0]:= series(f[0], z, 21):
for n from 1 to 20 do
ff:= unapply(f[n-1], z);
f[n]:= simplify(1/3*sum(ff(w*z^(1/3)), w=RootOf(Z^3-1, Z)))/(1-z);
S[n]:= series(f[n], z, 21-n)
od:
seq(seq(coeff(S[s-i], z, i), i=0..s), s=0..20); # Robert Israel, Jun 02 2019
MATHEMATICA
T[0, _] = T[_, 0] = 1; T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, 3 k]; Table[T[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 08 2016 *)
PROG
(PARI) T(n, k, p=0, q=3)=local(A=Mat(1), B); if(n<p || p<0, 0, for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i || j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return((A^(k+1))[n+1, p+1]))
CROSSREFS
Cf. A078122; columns: A078125, A078124, A125801, A125802, A125803; A125804 (diagonal), A125805 (antidiagonal sums); related table: A125800 (q=2).
KEYWORD
nonn,tabl,look
AUTHOR
Paul D. Hanna, Dec 10 2006
STATUS
approved
A125860 Rectangular table where column k equals row sums of matrix power A097712^k, read by antidiagonals. +30
8
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 17, 12, 4, 1, 1, 86, 69, 22, 5, 1, 1, 698, 612, 178, 35, 6, 1, 1, 9551, 8853, 2251, 365, 51, 7, 1, 1, 226592, 217041, 46663, 5990, 651, 70, 8, 1, 1, 9471845, 9245253, 1640572, 161525, 13131, 1057, 92, 9, 1, 1, 705154187 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Triangle A097712 satisfies: A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1) for n > 0, k > 0, with A097712(n,0)=A097712(n,n)=1 for n >= 0. Column 1 equals A016121, which counts the sequences (a_1, a_2, ..., a_n) of length n with a_1 = 1 satisfying a_i <= a_{i+1} <= 2*a_i.
T(2, n) = (n+1)*A005408(n) - Sum_{i=0..n} A001477(i) = (n+1)*(2*n+1) - A000217(n) = (n+1)*(3*n+2)/2; T(3, n) = (n+1)*A001106(n+1) - Sum_{i=0..n} A001477(i) = (n+1)*((n+1)*(7*n+2)/2) - A000217(n) = (n+1)*(7*n^2 + 8*n + 2)/2. - Bruno Berselli, Apr 25 2010
LINKS
FORMULA
T(n,k) = Sum_{j=0..k} T(n-1, j+k) for n > 0, with T(0,n)=T(n,0)=1 for n >= 0.
EXAMPLE
Recurrence is illustrated by:
T(4,1) = T(3,1) + T(3,2) = 17 + 69 = 86;
T(4,2) = T(3,2) + T(3,3) + T(3,4) = 69 + 178 + 365 = 612;
T(4,3) = T(3,3) + T(3,4) + T(3,5) + T(3,6) = 178 + 365 + 651 + 1057 = 2251.
Rows of this table begin:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,...;
1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, ...;
1, 17, 69, 178, 365, 651, 1057, 1604, 2313, 3205, 4301, 5622, 7189,..;
1, 86, 612, 2251, 5990, 13131, 25291, 44402, 72711, 112780, 167486,..;
1, 698, 8853, 46663, 161525, 435801, 996583, 2025458, 3768273, ...;
1, 9551, 217041, 1640572, 7387640, 24530016, 66593821, 156664796, ...;
1, 226592, 9245253, 100152049, 586285040, 2394413286, 7713533212, ...;
1, 9471845, 695682342, 10794383587, 82090572095, 412135908606, ...;
1, 705154187, 93580638024, 2079805452133, 20540291522675, ...;
1, 94285792211, 22713677612832, 723492192295786, 9278896006526795,...;
1, 22807963405043, 10025101876435413, 458149292979837523, ...;
...
where column k equals the row sums of matrix power A097712^k for k >= 0.
Triangle A097712 begins:
1;
1, 1;
1, 3, 1;
1, 8, 7, 1;
1, 25, 44, 15, 1;
1, 111, 346, 208, 31, 1;
1, 809, 4045, 3720, 912, 63, 1;
1, 10360, 77351, 99776, 35136, 3840, 127, 1;
1, 236952, 2535715, 4341249, 2032888, 308976, 15808, 255; ...
where A097712(n,k) = A097712(n-1,k) + [A097712^2](n-1,k-1);
e.g., A097712(5,2) = A097712(4,2) + [A097712^2](4,1) = 44 + 302 = 346.
Matrix square A097712^2 begins:
1;
2, 1;
5, 6, 1;
17, 37, 14, 1;
86, 302, 193, 30, 1;
698, 3699, 3512, 881, 62, 1;
9551, 73306, 96056, 34224, 3777, 126, 1; ...
Matrix cube A097712^3 begins:
1;
3, 1;
12, 9, 1;
69, 87, 21, 1;
612, 1146, 447, 45, 1;
8853, 22944, 12753, 2019, 93, 1;
217041, 744486, 549453, 120807, 8595, 189, 1; ...
PROG
(PARI) T(n, k)=if(n==0 || k==0, 1, sum(j=0, k, T(n-1, j+k)))
CROSSREFS
Cf. A097712; columns: A016121, A125862, A125863, A125864, A125865; A125861 (diagonal), A125859 (antidiagonal sums). Variants: A125790, A125800.
Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) and similar: A081436, A005920, A005945, A006003. - Bruno Berselli, Apr 25 2010
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 13 2006
STATUS
approved
A308292 A(n,k) = Sum_{i_1=0..n} Sum_{i_2=0..n} ... Sum_{i_k=0..n} multinomial(i_1 + i_2 + ... + i_k; i_1, i_2, ..., i_k), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0. +30
6
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 16, 19, 4, 1, 1, 65, 271, 69, 5, 1, 1, 326, 7365, 5248, 251, 6, 1, 1, 1957, 326011, 1107697, 110251, 923, 7, 1, 1, 13700, 21295783, 492911196, 191448941, 2435200, 3431, 8, 1, 1, 109601, 1924223799, 396643610629, 904434761801, 35899051101, 55621567, 12869, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
For r > 1, row r is asymptotic to sqrt(2*Pi) * (r*n)^(r*n + 1/2) / ((r!)^n * exp(r*n-1)). - Vaclav Kotesovec, May 24 2020
LINKS
FORMULA
A(n,k) = Sum_{i=0..k*n} b(i) where Sum_{i=0..k*n} b(i) * x^i/i! = (Sum_{i=0..n} x^i/i!)^k.
EXAMPLE
For (n,k) = (3,2), (Sum_{i=0..3} x^i/i!)^2 = (1 + x + x^2/2 + x^3/6)^2 = 1 + 2*x + 4*x^2/2 + 8*x^3/6 + 14*x^4/24 + 20*x^5/120 + 20*x^6/720. So A(3,2) = 1 + 2 + 4 + 8 + 14 + 20 + 20 = 69.
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 16, 65, 326, ...
1, 3, 19, 271, 7365, 326011, ...
1, 4, 69, 5248, 1107697, 492911196, ...
1, 5, 251, 110251, 191448941, 904434761801, ...
1, 6, 923, 2435200, 35899051101, 1856296498826906, ...
1, 7, 3431, 55621567, 7101534312685, 4098746255797339511, ...
CROSSREFS
Columns k=0..4 give A000012, A000027(n+1), A030662(n+1), A144660, A144661.
Rows n=0..4 give A000012, A000522, A003011, A308294, A308295.
Main diagonal gives A274762.
Cf. A144510.
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 19 2019
STATUS
approved
A107735 Array read by antidiagonals: A(n,k) = Verlinde numbers for quasiparabolic bundles (n >= 3, k >= 0) +30
5
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 4, 13, 4, 1, 1, 21, 11, 25, 5, 1, 1, 8, 141, 24, 41, 6, 1, 1, 85, 43, 521, 45, 61, 7, 1, 1, 16, 1485, 160, 1401, 76, 85, 8, 1, 1, 341, 171, 10569, 461, 3101, 119, 113, 9, 1, 1, 32, 15565, 1088, 46649, 1112, 6021, 176, 145, 10 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
3,5
REFERENCES
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
LINKS
FORMULA
The reference gives an explicit formula. For odd n this is
A(n,k) = (1/(2*k+1))*sum( (-1)^(n*j)*sin( (2*j+1)*Pi/(4*k+2) )^(-n+2), j=0..2*k). - N. J. A. Sloane, Apr 20 2013.
For even n use the same formula but replace k by k/2. - Michel Marcus, Apr 20 2013
EXAMPLE
Array begins:
1 1 1 1 1 1 1 1 1 1 ...
1 2 3 4 5 6 7 8 9 10 ...
1 5 13 25 41 61 85 113 ...
1 4 11 24 45 76 119 ...
1 21 141 521 1401 3101 ...
MAPLE
Digits:=100;
A:=proc(n, k) local kp;
if (n mod 2) = 1 then
round( (1/(2*k+1))*add( (-1)^(n*j)*sin( (2*j+1)*Pi/(4*k+2) )^(-n+2), j=0..2*k))
else kp:=k/2;
round( (1/(2*kp+1))*add( (-1)^(n*j)*sin( (2*j+1)*Pi/(4*kp+2) )^(-n+2), j=0..2*kp)); fi;
end;
MATHEMATICA
t[n_, k_] := With[{kp = If[!Divisible[n, 2], k, k/2]}, Round[1/(2*kp+1)*Sum[(-1)^(n*j)*Sin[(2*j+1)*Pi/(4*kp+2)]^(-n+2), {j, 0, 2*kp}]]]; Table[t[n-k, k], {n, 3, 13}, {k, 0, n-3}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Michel Marcus *)
PROG
(PARI) t(n, k) = {if (! (n % 2), k = k/2); return (round((1/(2*k+1))*sum(j=0, 2*k, (-1)^(n*j)*sin((2*j+1)*Pi/(4*k+2))^(-n+2)))); } \\ Michel Marcus, Apr 20 2013
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 10 2005
STATUS
approved
A117396 Triangle, read by rows, defined by: T(n,k) = (k+1)*T(n,k+1) - Sum_{j=1..n-k-1} T(j,0)*T(n,j+k+1) for n>k with T(n,n)=1 for n>=0. +30
4
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 17, 11, 4, 1, 1, 77, 51, 19, 5, 1, 1, 437, 291, 109, 29, 6, 1, 1, 2957, 1971, 739, 197, 41, 7, 1, 1, 23117, 15411, 5779, 1541, 321, 55, 8, 1, 1, 204557, 136371, 51139, 13637, 2841, 487, 71, 9, 1, 1, 2018957, 1345971, 504739, 134597, 28041, 4807, 701, 89, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Columns equal the partial sums of columns of triangle A092582 for k>0: T(n, k) - T(n-1, k) = A092582(n,k) = number of permutations p of [n] having length of first run equal to k.
LINKS
FORMULA
T(n,k) = k*Sum_{j=k-1..n} j!/(k+1)! for n >= k > 0, with T(n,0) = 1 for n >= 0. - Paul D. Hanna, Jun 20 2006
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 5, 3, 1;
1, 17, 11, 4, 1;
1, 77, 51, 19, 5, 1;
1, 437, 291, 109, 29, 6, 1;
1, 2957, 1971, 739, 197, 41, 7, 1;
1, 23117, 15411, 5779, 1541, 321, 55, 8, 1;
1, 204557, 136371, 51139, 13637, 2841, 487, 71, 9, 1; ...
Matrix inverse is:
1;
-1, 1;
1, -2, 1;
1, 1, -3, 1;
1, 1, 1, -4, 1;
1, 1, 1, 1, -5, 1; ...
Matrix log is the integer triangle A117398:
0;
1, 0;
0, 2, 0;
-1, 2, 3, 0;
-3, 4, 5, 4, 0;
-9, 14, 15, 9, 5, 0;
-33, 68, 65, 34, 14, 6, 0; ...
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0, 1, k*Sum[j!/(k+1)!, {j, k-1, n}]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 24 2021 *)
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, if(n==k, 1, (k+1)*T(n, k+1)-sum(j=1, n-k-1, T(j, 0)*T(n, j+k+1))))
(PARI) /* Definition by Matrix Inverse: * / T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, if(r==c+1, -c, 1)))); (M^-1)[n+1, k+1]
(PARI) T(n, k)=if(n<k || k<0, 0, if(k==0, 1, k*sum(j=k-1, n, j!)/(k+1)!)) \\ Paul D. Hanna, Jun 20 2006
(Magma) [k eq 0 select 1 else k*(&+[Factorial(j)/Factorial(k+1): j in [k-1..n]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 24 2021
(Sage)
def A117396(n, k): return 1 if (k==0) else k*sum(factorial(j)/factorial(k+1) for j in (k-1..n))
flatten([[A117396(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 24 2021
CROSSREFS
Cf. A014288 (column 1), A056199 (column 2), A117397 (column 3), A003422 (row sums), A117398 (matrix log); A092582.
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 11 2006
STATUS
approved
A241579 Square array read by antidiagonals downwards: T(n,k) = Sum_{j=1..k} n^(k-j)*Stirling_2(k,j) (n >= 0, k >= 1). +30
4
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 15, 11, 4, 1, 1, 52, 49, 19, 5, 1, 1, 203, 257, 109, 29, 6, 1, 1, 877, 1539, 742, 201, 41, 7, 1, 1, 4140, 10299, 5815, 1657, 331, 55, 8, 1, 1, 21147, 75905, 51193, 15821, 3176, 505, 71, 9, 1, 1, 115975, 609441, 498118, 170389, 35451, 5497, 729, 89, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
A. Kerber, A matrix of combinatorial numbers related to the symmetric groups, Discrete Math., 21 (1978), 319-321.
A. Kerber, A matrix of combinatorial numbers related to the symmetric groups, Discrete Math., 21 (1978), 319-321. [Annotated scanned copy]
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, ...
1, 3, 11, 49, 257, 1539, 10299, 75905, 609441, 5284451, 49134923, 487026929, ...
1, 4, 19, 109, 742, 5815, 51193, 498118, 5296321, 60987817, 754940848, 9983845261, ...
1, 5, 29, 201, 1657, 15821, 170389, 2032785, 26546673, 376085653, 5736591885, 93614616409, ...
1, 6, 41, 331, 3176, 35451, 447981, 6282416, 96546231, 1611270851, 28985293526, 558413253581, ...
1, 7, 55, 505, 5497, 69823, 1007407, 16157905, 284214097, 5432922775, 112034017735, 2476196276617, ...
1, 8, 71, 729, 8842, 125399, 2026249, 36458010, 719866701, 15453821461, 358100141148, 8899677678109, ...
...
MAPLE
with(combinat):
T:=(n, k)->add(n^(k-j)*stirling2(k, j), j=1..k);
r:=n->[seq(T(n, k), k=1..12)];
for n from 0 to 8 do lprint(r(n)); od:
CROSSREFS
Three versions of this array are A111673, A241578, A241579.
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Apr 29 2014
STATUS
approved
page 1 2 3

Search completed in 0.010 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 29 14:02 EDT 2024. Contains 373851 sequences. (Running on oeis4.)