login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A259386
Palindromic numbers in bases 3 and 9 written in base 10.
16
0, 1, 2, 4, 8, 10, 20, 40, 80, 82, 91, 100, 164, 173, 182, 328, 364, 400, 656, 692, 728, 730, 820, 910, 1460, 1550, 1640, 2920, 3280, 3640, 5840, 6200, 6560, 6562, 6643, 6724, 7300, 7381, 7462, 8038, 8119, 8200, 13124, 13205, 13286, 13862, 13943, 14024, 14600, 14681, 14762, 26248, 26572, 26896, 29200, 29524, 29848, 32152, 32476, 32800, 52496, 52820, 53144, 55448, 55772, 56096, 58400, 58724, 59048, 59050, 59860, 60670, 65620, 66430, 67240, 72190, 73000, 73810
OFFSET
1,3
FORMULA
Intersection of A014190 and A029955.
EXAMPLE
40 is in the sequence because 40_10 = 44_9 = 1111_3.
MATHEMATICA
(* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 3], AppendTo[lst, pp]; Print[pp]]; k++]; lst
b1=3; b2=9; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 80000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)
KEYWORD
nonn,base
AUTHOR
Eric A. Schmidt and Robert G. Wilson v, Jul 16 2015
STATUS
approved