login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,1,1,1,1,3,1,5,1,1
Displaying 1-10 of 15 results found. page 1 2
     Sort: relevance | references | number | modified | created      Format: long | short | data
A059895 Table a(i,j) = product prime[k]^(Ei[k] AND Ej[k]) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; AND is the bitwise operation on binary representation of the exponents. +30
17
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 7, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Analogous to GCD, with AND replacing MIN.
LINKS
FORMULA
From Antti Karttunen, Apr 11 2017: (Start)
A(x,y) = A059896(x,y) / A059897(x,y).
A(x,y) * A059896(x,y) = A(x,y)^2 * A059897(x,y) = x*y.
(End)
EXAMPLE
The top left 18 X 18 corner of the array:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2
1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1
1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1
1, 2, 3, 1, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2
1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1
1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2
1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 9
1, 2, 1, 1, 5, 2, 1, 2, 1, 10, 1, 1, 1, 2, 5, 1, 1, 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1
1, 1, 3, 4, 1, 3, 1, 4, 1, 1, 1, 12, 1, 1, 3, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1
1, 2, 1, 1, 1, 2, 7, 2, 1, 2, 1, 1, 1, 14, 1, 1, 1, 2
1, 1, 3, 1, 5, 3, 1, 1, 1, 5, 1, 3, 1, 1, 15, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1
1, 2, 1, 1, 1, 2, 1, 2, 9, 2, 1, 1, 1, 2, 1, 1, 1, 18
A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 AND 3)* 3^(3 AND 5) = 2^1*3^1 = 6.
MATHEMATICA
a[i_, i_] := i;
a[i_, j_] := Module[{f1 = FactorInteger[i], f2 = FactorInteger[j], e1, e2}, Scan[(e1[#[[1]]] = #[[2]])&, f1]; Scan[(e2[#[[1]]] = #[[2]])&, f2]; Times @@ (#^BitAnd[e1[#], e2[#]]& /@ Intersection[f1[[All, 1]], f2[[All, 1]]]) ];
Table[a[i - j + 1, j], {i, 1, 15}, {j, 1, i}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)
PROG
(Scheme)
(define (A059895 n) (A059895bi (A002260 n) (A004736 n)))
(define (A059895bi a b) (let loop ((a a) (b b) (m 1)) (cond ((= 1 a) m) ((= 1 b) m) ((equal? (A020639 a) (A020639 b)) (loop (A028234 a) (A028234 b) (* m (expt (A020639 a) (A004198bi (A067029 a) (A067029 b)))))) ((< (A020639 a) (A020639 b)) (loop (A028234 a) b m)) (else (loop a (A028234 b) m)))))
;; Antti Karttunen, Apr 11 2017
CROSSREFS
KEYWORD
base,easy,nonn,tabl
AUTHOR
Marc LeBrun, Feb 06 2001
EXTENSIONS
Data section extended to 120 terms by Antti Karttunen, Apr 11 2017
STATUS
approved
A014491 a(n) = gcd(n, 2^n - 1). +30
8
1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 5, 7, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 5, 1, 21, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 27, 1, 1, 1, 1, 1, 15, 1, 1, 7, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 21, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 3, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
Also the GCD of the "binary n-th powers", the set of positive integers whose base-2 representation consists of a block of bits repeated n times consecutively. - Jeffrey Shallit, Jan 16 2018
prime(k) for k >= 2 divides a(n) if and only if n is divisible by prime(k)*A014664(k). - Robert Israel, Jan 16 2018
LINKS
Daniel M. Kane, Carlo Sanna, and Jeffrey Shallit, Waring's theorem for binary powers, arXiv:1801.04483 [math.NT], Jan 13 2018.
MAPLE
A014491:=n->igcd(n, 2^n-1); seq(A014491(n), n=1..100); # Wesley Ivan Hurt, Feb 02 2014
MATHEMATICA
Table[GCD[n, 2^n-1], {n, 100}] (* Harvey P. Dale, Mar 14 2013 *)
CROSSREFS
Cf. A014664.
KEYWORD
nonn,easy,nice
AUTHOR
Gary M. Mcguire (gmm8n(AT)weyl.math.virginia.edu)
STATUS
approved
A291448 Triangle read by rows, denominators of coefficients (in rising powers) of rational polynomials P(n,x) such that Integral_{x=0..1} P'(n,x) = BernoulliMedian(n). +30
7
1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 5, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 11, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 11, 1, 13, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 11, 1, 13, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
See A291447 and A290694 for comments.
LINKS
FORMULA
T(n,k) = Denominator([x^k] Integral(Sum_{j=0..n}(-1)^(n-j)*Stirling2(n,j)*j!*x^j)^m) for m = 2, n >= 0 and k = 0..m*n+1.
EXAMPLE
Triangle starts:
[1, 1]
[1, 1, 1, 3]
[1, 1, 1, 3, 1, 5]
[1, 1, 1, 3, 1, 5, 1, 7]
[1, 1, 1, 3, 1, 5, 1, 7, 1, 1]
[1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 11]
[1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13]
MAPLE
# See A291447.
MATHEMATICA
T[n_] := Integrate[Sum[(-1)^(n-j+1) StirlingS2[n, j] j! x^j, {j, 0, n}]^2, x];
Trow[n_] := CoefficientList[T[n], x] // Denominator;
Table[Trow[r], {r, 0, 7}] // Flatten
CROSSREFS
KEYWORD
nonn,tabf,frac
AUTHOR
Peter Luschny, Aug 24 2017
STATUS
approved
A317624 Number of integer partitions of n where all parts are > 1 and whose LCM is n. +30
6
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 17, 1, 1, 1, 7, 1, 60, 1, 1, 1, 1, 1, 76, 1, 1, 1, 55, 1, 105, 1, 11, 10, 1, 1, 187, 1, 6, 1, 13, 1, 30, 1, 111, 1, 1, 1, 5043, 1, 1, 15, 1, 1, 230, 1, 17, 1, 242, 1, 4173, 1, 1, 12, 19, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,13
LINKS
EXAMPLE
The a(20) = 5 partitions are (20), (10,4,4,2), (10,4,2,2,2), (5,5,4,4,2), (5,5,4,2,2,2).
The a(45) = 10 partitions:
(45),
(15,15,9,3,3), (15,9,9,9,3),
(15,9,9,3,3,3,3), (15,9,5,5,5,3,3), (9,9,9,5,5,5,3),
(15,9,3,3,3,3,3,3,3), (9,9,5,5,5,3,3,3,3), (9,5,5,5,5,5,5,3,3),
(9,5,5,5,3,3,3,3,3,3,3).
From David A. Corneth, Sep 08 2018: (Start)
Let sum(t) denote the sum of elements of a tuple t. The tuples t with distinct divisors of 45 that have lcm(t) = 45 and sum(t) <= 45 are {(45) and (3, 9, 15), (3, 5, 9, 15), (3, 5, 9), (5, 9), (9, 15), (5, 9, 15)}. For each such tuple t, find the number of partitions of 45 - s(t) into distinct parts of t.
For the tuple (45), there is 1 partition of 45 - 45 = 0 into parts with 45. That is: {()}.
For the tuple (3, 9, 15), there are 4 partitions of 45 - (3 + 9 + 15) = 18 into parts with 3, 9 and 15. They are {(3, 15), (9, 9), (3, 3, 3, 9), (3, 3, 3, 3, 3, 3)}.
For the tuple (3, 5, 9), there are 4 partitions of 45 - (3 + 5 + 9) = 28 into parts with 3, 5 and 9; they are {(5, 5, 9, 9), (3, 3, 3, 5, 5, 9), (3, 5, 5, 5, 5, 5), (3, 3, 3, 3, 3, 3, 5, 5)}.
For the tuple (3, 5, 9, 15), there is 1 partition of 45 - (3 + 5 + 9 + 15) = 13 into parts with 3, 5, 9 and 15. That is (3, 5, 5).
The other tuples, (5, 9), (9, 15), and (5, 9, 15); they give no extra tuples. That's because there is no solution to the Diophantine equation for 5x + 9y = 45 - (5 + 9), corresponding to the tuple (5, 9) with nonnegative x, y.
That also excludes (9, 15); if there is a solution for that, there would also be a solution for (5, 9). This could whittle down the number of seeds even further. Similarly, (5, 9, 15) gives no solution.
Therefore a(45) = 1 + 4 + 4 + 1 = 10.
(End)
In general, there are A318670(n) (<= A069626(n)) such seed sets of divisors where to start extending the partition from. (See the second PARI program which uses subroutine toplevel_starting_sets.) - Antti Karttunen, Sep 08 2018
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And[Min@@#>=2, LCM@@#==n]&]], {n, 30}]
PROG
(PARI)
strong_divisors_reversed(n) = vecsort(select(x -> (x>1), divisors(n)), , 4);
partitions_into_lcm(orgn, n, parts, from=1, m=1) = if(!n, (m==orgn), my(k = #parts, s=0); for(i=from, k, if(parts[i]<=n, s += partitions_into_lcm(orgn, n-parts[i], parts, i, lcm(m, parts[i])))); (s));
A317624(n) = if(n<=1, 0, partitions_into_lcm(n, n, strong_divisors_reversed(n))); \\ Antti Karttunen, Sep 07 2018
(PARI)
strong_divisors_reversed(n) = vecsort(select(x -> (x>1), divisors(n)), , 4);
partitions_into(n, parts, from=1) = if(!n, 1, if(#parts==from, (0==(n%parts[from])), my(s=0); for(i=from, #parts, if(parts[i]<=n, s += partitions_into(n-parts[i], parts, i))); (s)));
toplevel_starting_sets(orgn, n, parts, from=1, ss=List([])) = { my(k = #parts, s=0, newss); if(lcm(Vec(ss))==orgn, s += partitions_into(n, ss)); for(i=from, k, if(parts[i]<=n, newss = List(ss); listput(newss, parts[i]); s += toplevel_starting_sets(orgn, n-parts[i], parts, i+1, newss))); (s) };
A317624(n) = if(n<=1, 0, toplevel_starting_sets(n, n, strong_divisors_reversed(n))); \\ Antti Karttunen, Sep 08-10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 01 2018
STATUS
approved
A326454 Irregular triangle read by rows: T(n,k) is the number of small Schröder paths such that the area between the path and the x-axis is equal to n and contains k down-triangles. +30
5
1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 7, 5, 1, 9, 13, 1, 1, 11, 25, 8, 1, 13, 41, 28, 1, 1, 15, 61, 68, 11, 1, 17, 85, 136, 51, 1, 1, 19, 113, 240, 155, 15, 1, 21, 145, 388, 371, 86, 1, 1, 23, 181, 588, 763, 314, 19 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,7
COMMENTS
A227543 is the companion triangle for Dyck paths.
Number of n triangle stacks, in the sense of A224704, containing k down- triangles.
A Schröder path is a lattice path in the plane starting and ending on the x-axis, never going below the x-axis, using the steps (1,1) rise, (1,-1) fall or (2,0) flat. A small Schröder path is a Schröder path with no flat steps on the x-axis.
The area between a small Schröder path and the x-axis may be decomposed into a stack of unit area triangles; the triangles come in two types: up-triangles with vertices at the lattice points (x, y), (x+1, y+1) and (x+2, y) and down-triangles with vertices at the lattice points (x, y), (x-1, y+1) and (x+1, y+1). See the illustration in the Links section for an example.
LINKS
FORMULA
O.g.f. as a continued fraction: A(q,d) = 1/(2 - (1 + q)/(2 - (1 + q^3*d)/(2 - (1 + q^5*d^2)/( (...) )))) = 1 + q + q^2 + q^3*(1 + d) + q^4*(1 + 3*d) + q^5*(1 + 5*d + d^2) + ... (q marks the area, d marks down-triangles).
Other continued fractions: A(q,d) = 1/(1 - q/(1 - q^2*d - q^3*d/(1 - q^4*d^2 - q^5*d^2/(1 - q^6*d^3 - (...) )))).
A(q,d) = 1/(1 - q/(1 - (q^2*d + q^3*d)/(1 - q^5*d^2/(1 - (q^4*d^2 + q^7*d^3)/(1 - q^9*d^4/(1 - (q^6*d^3 + q^11*d^5)/(1 - q^13*d^6/( (...) )))))))).
O.g.f. as a ratio of q-series: N(q,d)/D(q,d), where N(q,d) = Sum_{n >= 0} (-1)^n*d^(n^2)*q^(2*n^2 + n)/( (1 - d*q^2)*(1 - d^2*q^4)*...*(1 - d^n*q^(2*n)) )^2 and D(q,d) = Sum_{n >= 0} (-1)^n*d^(n^2 - n)*q^(2*n^2 - n)/( (1 - d*q^2)*(1 - d^2*q^4)*...*(1 - d^n*q^(2*n)) )^2.
EXAMPLE
Triangle begins
n\k| 0 1 2 3 4
------------------------------
0 | 1
1 | 1
2 | 1
3 | 1 1
4 | 1 3
5 | 1 5 1
6 | 1 7 5
7 | 1 9 13 1
8 | 1 11 25 8
9 | 1 13 41 28 1
10 | 1 15 61 68 11
...
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Peter Bala, Jul 06 2019
STATUS
approved
A225174 Square array read by antidiagonals: T(m,n) = greatest common unitary divisor of m and n. +30
4
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 5, 1, 3, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
REFERENCES
M. Lal, H. Wareham and R. Mifflin, Iterates of the bi-unitary totient function, Utilitas Math., 10 (1976), 347-350.
LINKS
FORMULA
T(m,n) = T(n,m) = A165430(n,m).
EXAMPLE
Array begins
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, ...
1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, ...
1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, ...
1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, ...
1, 2, 3, 1, 1, 6, 1, 1, 1, 2, 1, 3, ...
1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, ...
...
The unitary divisors of 3 are 1 and 3, those of 6 are 1,2,3,6; so T(6,3) = T(3,6) = 3.
MAPLE
# returns the greatest common unitary divisor of m and n
f:=proc(m, n)
local i, ans;
ans:=1;
for i from 1 to min(m, n) do
if ((m mod i) = 0) and (igcd(i, m/i) = 1) then
if ((n mod i) = 0) and (igcd(i, n/i) = 1) then ans:=i; fi;
fi;
od;
ans; end;
MATHEMATICA
f[m_, n_] := Module[{i, ans=1}, For[i=1, i<=Min[m, n], i++, If[Mod[m, i]==0 && GCD[i, m/i]==1, If[Mod[n, i]==0 && GCD[i, n/i]==1, ans=i]]]; ans];
Table[f[m-n+1, n], {m, 1, 14}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 19 2018, translated from Maple *)
PROG
(PARI)
up_to = 20100; \\ = binomial(200+1, 2)
A225174sq(m, n) = { my(a=min(m, n), b=max(m, n), md=0); fordiv(a, d, if(0==(b%d)&&1==gcd(d, a/d)&&1==gcd(d, b/d), md=d)); (md); };
A225174list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, if(i++ > up_to, return(v)); v[i] = A225174sq((a-(col-1)), col))); (v); };
v225174 = A225174list(up_to);
A225174(n) = v225174[n]; \\ Antti Karttunen, Nov 28 2018
CROSSREFS
See A034444, A077610 for unitary divisors of n.
Different from A059895.
KEYWORD
nonn,tabl,look
AUTHOR
N. J. A. Sloane, May 01 2013
STATUS
approved
A356167 Greatest common divisor of A003961(n) and the smallest positive k such that n divides k*A003961(k), where A003961 is fully multiplicative with a(p) = nextprime(p). +30
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 11, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,10
LINKS
FORMULA
a(n) = gcd(A003961(n), A356164(n)).
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A356167(n) = for(k=1, oo, if((k*A003961(k))%n==0, return(gcd(A003961(n), k))));
CROSSREFS
Cf. also A345993.
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Jul 28 2022
STATUS
approved
A093421 Triangle read by rows: T(n,k) is the denominator of f(n, k) = (Product_{i = 0..k-1} (n-i))/(Sum_{i = 1..k} i) for 1 <= k <= n. +30
3
1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
FORMULA
T(n,n) = denominator(f(n, n)) = denominator(2*(n-1)!/(n+1)).
EXAMPLE
Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
1;
1, 3;
1, 1, 1;
1, 1, 1, 5;
1, 3, 1, 1, 1;
1, 1, 1, 1, 1, 7;
1, 1, 1, 1, 1, 1, 1;
1, 3, 1, 1, 1, 1, 1, 1;
1, 1, 1, 5, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 11;
...
CROSSREFS
Cf. A090585, A090586, A093415, A093420 (numerators), A093423.
KEYWORD
nonn,easy,frac,tabl,less
AUTHOR
Amarnath Murthy, Mar 30 2004
EXTENSIONS
Edited and extended by David Wasserman, Aug 29 2006
STATUS
approved
A143069 Least number k such that n*k has the fewest possible ones in its binary expansion. +30
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 27, 1, 1, 3, 3, 1, 41, 5, 19, 1, 565, 1, 1, 1, 1, 1, 1, 1, 7085, 27, 7, 1, 25, 1, 3, 3, 1, 3, 11, 1, 1, 41, 1, 5, 1266205, 19, 7, 1, 9, 565, 9099507, 1, 17602325, 1, 1, 1, 1, 1, 128207979, 1, 1, 1, 119, 1, 1, 7085, 1, 27, 5, 7, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,11
COMMENTS
a(n)=1 indicates that n is a sturdy number (A125121); that is, no multiple of n has fewer ones than the binary expansion of n. A086342(n) gives the least possible number of ones in the binary expansion of a multiple of n. Compare with A143073.
LINKS
Trevor Clokie et al., Computational Aspects of Sturdy and Flimsy Numbers, arxiv preprint arXiv:2002.02731 [cs.DS], February 7 2020.
KEYWORD
nonn
AUTHOR
T. D. Noe, Jul 22 2008
STATUS
approved
A318449 Numerators of the sequence whose Dirichlet convolution with itself yields A001511, the 2-adic valuation of 2n. +30
3
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 35, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,9
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001511(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
MATHEMATICA
a1511[n_] := IntegerExponent[2n, 2];
f[1] = 1; f[n_] := f[n] = 1/2 (a1511[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
Table[f[n] // Numerator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
PROG
(PARI)
up_to = 65537;
A001511(n) = 1+valuation(n, 2);
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
v318449_51 = DirSqrt(vector(up_to, n, A001511(n)));
A318449(n) = numerator(v318449_51[n]);
CROSSREFS
Cf. A001511, A318450 (denominators).
KEYWORD
nonn,frac
AUTHOR
STATUS
approved
page 1 2

Search completed in 0.009 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 29 14:02 EDT 2024. Contains 373851 sequences. (Running on oeis4.)