login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291450
Denominators of Integral_{x=0..1} P(n, x)^3 with P(n, x) = Sum_{k=0..n}(-1)^(n-k)* Stirling2(n, k)*k!*x^k.
6
1, 4, 140, 28, 20020, 4004, 6466460, 184756, 148728580, 29745716, 133706993420, 2431036244, 449741705140, 31885268, 670910837521540, 134182167504308, 409926521725660940, 4822664961478364, 1278006214791766460, 1921813856829724, 242081282475556183660, 4401477863191930612
OFFSET
0,2
COMMENTS
See A291449 and A290694 for comments.
MAPLE
# Function BG_row is defined in A290694.
seq(BG_row(3, n, "den", "val"), n=0..20);
MATHEMATICA
P[n_, x_] := Sum[(-1)^(n-k)*StirlingS2[n, k]*k!*x^k, {k, 0, n}];
a[n_] := Integrate[P[n, x]^3, {x, 0, 1}] // Denominator;
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jun 15 2019 *)
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Aug 24 2017
STATUS
approved