|
|
A291450
|
|
Denominators of Integral_{x=0..1} P(n, x)^3 with P(n, x) = Sum_{k=0..n}(-1)^(n-k)* Stirling2(n, k)*k!*x^k.
|
|
6
|
|
|
1, 4, 140, 28, 20020, 4004, 6466460, 184756, 148728580, 29745716, 133706993420, 2431036244, 449741705140, 31885268, 670910837521540, 134182167504308, 409926521725660940, 4822664961478364, 1278006214791766460, 1921813856829724, 242081282475556183660, 4401477863191930612
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
See A291449 and A290694 for comments.
|
|
LINKS
|
Table of n, a(n) for n=0..21.
|
|
MAPLE
|
# Function BG_row is defined in A290694.
seq(BG_row(3, n, "den", "val"), n=0..20);
|
|
MATHEMATICA
|
P[n_, x_] := Sum[(-1)^(n-k)*StirlingS2[n, k]*k!*x^k, {k, 0, n}];
a[n_] := Integrate[P[n, x]^3, {x, 0, 1}] // Denominator;
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jun 15 2019 *)
|
|
CROSSREFS
|
Cf. A164555/A027642, A212196/A181131, A291449/A291450, A290694/A290695, A291447/A291448.
Sequence in context: A029850 A221675 A340838 * A093981 A055304 A270065
Adjacent sequences: A291447 A291448 A291449 * A291451 A291452 A291453
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
Peter Luschny, Aug 24 2017
|
|
STATUS
|
approved
|
|
|
|