The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291447 Triangle read by rows, numerators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = BernoulliMedian(n). 7
0, 1, 0, 0, 0, 1, 0, 0, 0, 1, -1, 4, 0, 0, 0, 1, -3, 48, -12, 36, 0, 0, 0, 1, -7, 268, -176, 1968, -216, 64, 0, 0, 0, 1, -15, 240, -1580, 37140, -9900, 10400, -5760, 14400, 0, 0, 0, 1, -31, 4924, -11680, 488640, -238680, 496320, -639360, 5486400, -216000, 518400 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,12
COMMENTS
The Bernoulli median numbers are A212196/A181131. See A290694 for further comments.
LINKS
Peter Luschny, Illustrating A291447
FORMULA
T(n,k) = Numerator([x^k] Integral(Sum_{j=0..n}(-1)^(n-j)*Stirling2(n,j)*j!*x^j)^m) for m = 2, n >= 0 and k = 0..m*n+1.
EXAMPLE
Triangle starts:
[0, 1]
[0, 0, 0, 1]
[0, 0, 0, 1, -1, 4]
[0, 0, 0, 1, -3, 48, -12, 36]
[0, 0, 0, 1, -7, 268, -176, 1968, -216, 64]
[0, 0, 0, 1, -15, 240, -1580, 37140, -9900, 10400, -5760, 14400]
The first few polynomials are:
P_0(x) = x.
P_1(x) = (1/3)*x^3.
P_2(x) = (4/5)*x^5 - x^4 + (1/3)*x^3.
P_3(x) = (36/7)*x^7 - 12*x^6 + (48/5)*x^5 - 3*x^4 + (1/3)*x^3.
P_4(x) = 64*x^9 - 216*x^8 + (1968/7)*x^7 - 176*x^6 + (268/5)*x^5 - 7*x^4 +(1/3)*x^3.
Evaluated at x = 1 this gives a decomposition of the Bernoulli median numbers:
BM(0) = 1 = 1.
BM(1) = 1/3 = 1/3.
BM(2) = 2/15 = 4/5 - 1 + 1/3.
BM(3) = 8/105 = 36/7 - 12 + 48/5 - 3 + 1/3.
BM(4) = 8/105 = 64 - 216 + 1968/7 - 176 + 268/5 - 7 + 1/3.
MAPLE
# The function BG_row is defined in A290694.
seq(BG_row(2, n, "num", "val"), n=0..12); # A212196
seq(BG_row(2, n, "den", "val"), n=0..12); # A181131
seq(print(BG_row(2, n, "num", "poly")), n=0..7); # A291447 (this seq.)
seq(print(BG_row(2, n, "den", "poly")), n=0..9); # A291448
MATHEMATICA
T[n_] := Integrate[Sum[(-1)^(n-j+1) StirlingS2[n, j] j! x^j, {j, 0, n}]^2, x];
Trow[n_] := CoefficientList[T[n], x] // Numerator;
Table[Trow[r], {r, 0, 6}] // Flatten
CROSSREFS
Sequence in context: A245817 A343316 A277115 * A152894 A152898 A368661
KEYWORD
sign,tabf,frac
AUTHOR
Peter Luschny, Aug 24 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 15:24 EDT 2024. Contains 372664 sequences. (Running on oeis4.)