OFFSET
0,12
LINKS
Peter Luschny, Illustrating A291447
FORMULA
T(n,k) = Numerator([x^k] Integral(Sum_{j=0..n}(-1)^(n-j)*Stirling2(n,j)*j!*x^j)^m) for m = 2, n >= 0 and k = 0..m*n+1.
EXAMPLE
Triangle starts:
[0, 1]
[0, 0, 0, 1]
[0, 0, 0, 1, -1, 4]
[0, 0, 0, 1, -3, 48, -12, 36]
[0, 0, 0, 1, -7, 268, -176, 1968, -216, 64]
[0, 0, 0, 1, -15, 240, -1580, 37140, -9900, 10400, -5760, 14400]
The first few polynomials are:
P_0(x) = x.
P_1(x) = (1/3)*x^3.
P_2(x) = (4/5)*x^5 - x^4 + (1/3)*x^3.
P_3(x) = (36/7)*x^7 - 12*x^6 + (48/5)*x^5 - 3*x^4 + (1/3)*x^3.
P_4(x) = 64*x^9 - 216*x^8 + (1968/7)*x^7 - 176*x^6 + (268/5)*x^5 - 7*x^4 +(1/3)*x^3.
Evaluated at x = 1 this gives a decomposition of the Bernoulli median numbers:
BM(0) = 1 = 1.
BM(1) = 1/3 = 1/3.
BM(2) = 2/15 = 4/5 - 1 + 1/3.
BM(3) = 8/105 = 36/7 - 12 + 48/5 - 3 + 1/3.
BM(4) = 8/105 = 64 - 216 + 1968/7 - 176 + 268/5 - 7 + 1/3.
MAPLE
MATHEMATICA
T[n_] := Integrate[Sum[(-1)^(n-j+1) StirlingS2[n, j] j! x^j, {j, 0, n}]^2, x];
Trow[n_] := CoefficientList[T[n], x] // Numerator;
Table[Trow[r], {r, 0, 6}] // Flatten
CROSSREFS
KEYWORD
sign,tabf,frac
AUTHOR
Peter Luschny, Aug 24 2017
STATUS
approved