login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291444
Number of symmetric maximal irredundant sets in the n-path graph.
2
1, 0, 2, 2, 2, 2, 3, 3, 5, 6, 7, 6, 10, 12, 15, 15, 22, 23, 33, 35, 48, 48, 71, 75, 103, 106, 152, 158, 225, 234, 329, 338, 484, 505, 710, 734, 1044, 1084, 1536, 1594, 2257, 2335, 3317, 3444, 4871, 5047, 7161, 7429, 10528, 10916, 15470, 16033, 22737, 23582
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Maximal Irredundant Set
Eric Weisstein's World of Mathematics, Path Graph
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, -1, 0, -2, 0, -1, 0, 2, 0, 1, 0, 0, 0, 0, 0, -1).
FORMULA
a(n) = a(n-4) + a(n-6) + a(n-8) + a(n-10) - a(n-14) - 2*a(n-16) - a(n-18) + 2*a(n-20) + a(n-22) - a(n-28) for n > 28.
G.f.: x*(1 + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + x^7 + 2*x^9 - x^10 - x^11 - 2*x^12 - x^13 - x^14 - 2*x^15 + x^16 - 2*x^17 + 3*x^18 + 2*x^19 + x^20 + x^21 - x^22 - x^24 - x^26 - x^27)/(1 - x^4 - x^6 - x^8 - x^10 + x^14 + 2*x^16 + x^18 - 2*x^20 - x^22 + x^28).
EXAMPLE
Case n=5: maximal irredundant sets represented as binary words are {00110, 01001, 01010, 01100, 10010, 10101}. Of these, only 01010 and 10101 are symmetrical, so a(5) = 2.
PROG
(PARI) Vec((1 + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + x^7 + 2*x^9 - x^10 - x^11 - 2*x^12 - x^13 - x^14 - 2*x^15 + x^16 - 2*x^17 + 3*x^18 + 2*x^19 + x^20 + x^21 - x^22 - x^24 - x^26 - x^27)/(1 - x^4 - x^6 - x^8 - x^10 + x^14 + 2*x^16 + x^18 - 2*x^20 - x^22 + x^28) + O(x^50))
CROSSREFS
Cf. A291055.
Sequence in context: A005858 A285798 A321346 * A219795 A082602 A216644
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Aug 23 2017
STATUS
approved