login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291446
Squarefree triprimes of the form p*q*r such that p + q + r + 1 is prime.
1
30, 42, 66, 78, 102, 110, 138, 182, 186, 222, 230, 246, 266, 282, 290, 318, 366, 374, 402, 434, 438, 498, 506, 518, 530, 582, 590, 602, 606, 618, 638, 642, 710, 782, 786, 806, 854, 890, 906, 942, 962, 1002, 1010, 1022, 1034, 1038, 1106, 1118, 1146, 1158, 1166, 1178, 1298
OFFSET
1,1
COMMENTS
All terms are even. - Muniru A Asiru, Aug 29 2017
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
42 = 2*3*7 and 2 + 3 + 7 + 1 is prime, so 42 is a term.
402 = 2*3*67 and 2 + 3 + 67 + 1 is prime, so 402 is a term.
MATHEMATICA
With[{nnn=80}, Take[Times@@@Select[Subsets[Prime[Range[nnn]], {3}], PrimeQ[Total[#] + 1] &]//Union, nnn]]
PROG
(GAP)
A291446:=List(Filtered(Filtered(List(Filtered(List([1..10^6], Factors), i->Length(i)=3), Set), j->Length(j)=3), i->IsPrime(Sum(i)+1)), Product); # Muniru A Asiru, Aug 29 2017
(PARI) list(lim)=my(v=List()); forprime(p=5, lim\6, forprime(q=3, min(lim\(2*p), p-2), if(isprime(p+q+3), listput(v, 2*p*q)))); Set(v) \\ Charles R Greathouse IV, Aug 29 2017
CROSSREFS
Subsequence of A075819, and hence of A007304.
Cf. A291319.
Sequence in context: A300156 A306330 A160352 * A342398 A226104 A091455
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Aug 24 2017
STATUS
approved