OFFSET
0,6
FORMULA
T(n,k) = Denominator([x^k] Integral(Sum_{j=0..n}(-1)^(n-j)*Stirling2(n,j)*j!*x^j)^m) for m = 2, n >= 0 and k = 0..m*n+1.
EXAMPLE
Triangle starts:
[1, 1]
[1, 1, 1, 3]
[1, 1, 1, 3, 1, 5]
[1, 1, 1, 3, 1, 5, 1, 7]
[1, 1, 1, 3, 1, 5, 1, 7, 1, 1]
[1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 11]
[1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13]
MAPLE
# See A291447.
MATHEMATICA
T[n_] := Integrate[Sum[(-1)^(n-j+1) StirlingS2[n, j] j! x^j, {j, 0, n}]^2, x];
Trow[n_] := CoefficientList[T[n], x] // Denominator;
Table[Trow[r], {r, 0, 7}] // Flatten
CROSSREFS
KEYWORD
nonn,tabf,frac
AUTHOR
Peter Luschny, Aug 24 2017
STATUS
approved