The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291448 Triangle read by rows, denominators of coefficients (in rising powers) of rational polynomials P(n,x) such that Integral_{x=0..1} P'(n,x) = BernoulliMedian(n). 7
1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 5, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 11, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 11, 1, 13, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 11, 1, 13, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
See A291447 and A290694 for comments.
LINKS
FORMULA
T(n,k) = Denominator([x^k] Integral(Sum_{j=0..n}(-1)^(n-j)*Stirling2(n,j)*j!*x^j)^m) for m = 2, n >= 0 and k = 0..m*n+1.
EXAMPLE
Triangle starts:
[1, 1]
[1, 1, 1, 3]
[1, 1, 1, 3, 1, 5]
[1, 1, 1, 3, 1, 5, 1, 7]
[1, 1, 1, 3, 1, 5, 1, 7, 1, 1]
[1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 11]
[1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13]
MAPLE
# See A291447.
MATHEMATICA
T[n_] := Integrate[Sum[(-1)^(n-j+1) StirlingS2[n, j] j! x^j, {j, 0, n}]^2, x];
Trow[n_] := CoefficientList[T[n], x] // Denominator;
Table[Trow[r], {r, 0, 7}] // Flatten
CROSSREFS
Sequence in context: A183096 A029356 A334019 * A114006 A050328 A191278
KEYWORD
nonn,tabf,frac
AUTHOR
Peter Luschny, Aug 24 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 15:24 EDT 2024. Contains 372664 sequences. (Running on oeis4.)