login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290694
Triangle read by rows, numerators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = Bernoulli(n, 1).
6
0, 1, 0, 0, 1, 0, 0, -1, 2, 0, 0, 1, -2, 3, 0, 0, -1, 14, -9, 24, 0, 0, 1, -10, 75, -48, 20, 0, 0, -1, 62, -135, 312, -300, 720, 0, 0, 1, -42, 903, -1680, 2800, -2160, 630, 0, 0, -1, 254, -1449, 40824, -21000, 27360, -17640, 4480
OFFSET
0,9
COMMENTS
Consider a family of integrals I_m(n) = Integral_{x=0..1} P'(n, x)^m with P'(n,x) = Sum_{k=0..n}(-1)^(n-k)*Stirling2(n, k)*k!*x^k (see A278075 for the coefficients).
I_1(n) are the Bernoulli numbers A164555/A027642, I_2(n) are the Bernoulli median numbers A212196/A181131, I_3(n) are the numbers A291449/A291450.
The coefficients of the polynomials P_n(x)^m are for m = 1 A290694/A290695 and for m = 2 A291447/A291448.
Only omega(Clausen(n)) = A001221(A160014(n,1)) = A067513(n) coefficients are rational numbers if n is even. For odd n > 1 there are two rational coefficients.
Let C_k(n) = [x^k] P_n(x), k > 0 and n even. Conjecture: k is a prime factor of Clausen(n) <=> k = denominator(C_k(n)) <=> k does not divide Stirling2(n, k-1)*(k-1)!. (Note that by a comment in A019538 Stirling2(n, k-1)*(k-1)! is the number of chain topologies on an n-set having k open sets.)
FORMULA
T(n, k) = Numerator(Stirling2(n, k - 1)*(k - 1)!/k) if k > 0 else 0; for n >= 0 and 0 <= k <= n+1.
EXAMPLE
Triangle starts:
[0, 1]
[0, 0, 1]
[0, 0, -1, 2]
[0, 0, 1, -2, 3]
[0, 0, -1, 14, -9, 24]
[0, 0, 1, -10, 75, -48, 20]
[0, 0, -1, 62, -135, 312, -300, 720]
The first few polynomials are:
P_0(x) = x.
P_1(x) = (1/2)*x^2.
P_2(x) = -(1/2)*x^2 + (2/3)*x^3.
P_3(x) = (1/2)*x^2 - 2*x^3 + (3/2)*x^4.
P_4(x) = -(1/2)*x^2 + (14/3)*x^3 - 9*x^4 + (24/5)*x^5.
P_5(x) = (1/2)*x^2 - 10*x^3 + (75/2)*x^4 - 48*x^5 + 20*x^6.
P_6(x) = -(1/2)*x^2 + (62/3)*x^3 - 135*x^4 + 312*x^5 - 300*x^6 + (720/7)*x^7.
Evaluated at x = 1 this gives an additive decomposition of the Bernoulli numbers:
B(0) = 1 = 1.
B(1) = 1/2 = 1/2.
B(2) = 1/6 = -1/2 + 2/3.
B(3) = 0 = 1/2 - 2 + 3/2.
B(4) = -1/30 = -1/2 + 14/3 - 9 + 24/5.
B(5) = 0 = 1/2 - 10 + 75/2 - 48 + 20.
B(6) = 1/42 = -1/2 + 62/3 - 135 + 312 - 300 + 720/7.
MAPLE
BG_row := proc(m, n, frac, val) local F, g, v;
F := (n, x) -> add((-1)^(n-k)*Stirling2(n, k)*k!*x^k, k=0..n):
g := x -> int(F(n, x)^m, x):
`if`(val = "val", subs(x=1, g(x)), [seq(coeff(g(x), x, j), j=0..m*n+1)]):
`if`(frac = "num", numer(%), denom(%)) end:
seq(BG_row(1, n, "num", "val"), n=0..16); # A164555
seq(BG_row(1, n, "den", "val"), n=0..16); # A027642
seq(print(BG_row(1, n, "num", "poly")), n=0..12); # A290694 (this seq.)
seq(print(BG_row(1, n, "den", "poly")), n=0..12); # A290695
# Alternatively:
T_row := n -> numer(PolynomialTools:-CoefficientList(add((-1)^(n-j+1)*Stirling2(n, j-1)*(j-1)!*x^j/j, j=1..n+1), x)): for n from 0 to 6 do T_row(n) od;
MATHEMATICA
T[n_, k_] := If[k > 0, Numerator[StirlingS2[n, k - 1]*(k - 1)! / k], 0]; Table[T[n, k], {n, 0, 8}, {k, 0, n+1}] // Flatten
KEYWORD
sign,tabf,frac
AUTHOR
Peter Luschny, Aug 24 2017
STATUS
approved