login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290696
Triangle read by rows, T(n, k) = [x^k](Sum_{k=0..n}(-1)^(n-k)*Stirling2(n, k)*k!* x^k)^2, for 0 <= k <= 2n.
0
1, 0, 0, 1, 0, 0, 1, -4, 4, 0, 0, 1, -12, 48, -72, 36, 0, 0, 1, -28, 268, -1056, 1968, -1728, 576, 0, 0, 1, -60, 1200, -9480, 37140, -79200, 93600, -57600, 14400, 0, 0, 1, -124, 4924, -70080, 488640, -1909440, 4466880, -6393600, 5486400, -2592000, 518400
OFFSET
0,8
COMMENTS
Without squaring the sum in the definition one gets for the polynomials:
Integral_{x=0..1} P(n, x) = Bernoulli(n, 1) = A164555(n)/A027642(n).
FORMULA
Integral_{x=0..1} P(n, x) = BernoulliMedian(n) = A212196(n)/A181131(n).
EXAMPLE
Triangle starts:
[1]
[0, 0, 1]
[0, 0, 1, -4, 4]
[0, 0, 1, -12, 48, -72, 36]
[0, 0, 1, -28, 268, -1056, 1968, -1728, 576]
[0, 0, 1, -60, 1200, -9480, 37140, -79200, 93600, -57600, 14400]
The first few polynomials:
P_0(x) = 1
P_1(x) = x^2
P_2(x) = x^2 - 4*x^3 + 4*x^4
P_3(x) = x^2 - 12*x^3 + 48*x^4 - 72*x^5 + 36*x^6
P_4(x) = x^2 - 28*x^3 + 268*x^4 - 1056*x^5 + 1968*x^6 - 1728*x^7 + 576*x^8
MAPLE
P := (n, x) -> add((-1)^(n-k)*Stirling2(n, k)*k!*x^k, k=0..n)^2;
for n from 0 to 6 do seq(coeff(P(n, x), x, k), k=0..2*n) od;
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Peter Luschny, Aug 25 2017
STATUS
approved