The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291449 Numerators of Integral_{x=0..1} P(n, x)^3 with P(n, x) = Sum_{k=0..n} (-1)^(n-k)* Stirling2(n, k)*k!*x^k. 6
1, 1, 13, 1, 43, -61, 728877, 81739, -1779449713, -2112052153, 730622680308569, 113221320488699, -3660430816956396309, -3021604582205161, 21842539561810574341396283, 66747470298418575790593659, -124586733960451680357554181608419, -28471605423890788373026535240299 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Consider a family of integrals I(m, n) = Integral_{x=0..1} P(n, x)^m with P(n, x) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*k!*x^k. I(1, n) are the Bernoulli numbers A164555/A027642, I(2, n) are the Bernoulli median numbers A212196/A181131, I(3, n) are the numbers A291449/A291450. The coefficients of the polynomials P(n, x)^m are for m = 1 A290694/A290695, for m = 2 A291447/A291448. (See A290694 for further comments.)
LINKS
MAPLE
# Function BG_row is defined in A290694.
seq(BG_row(3, n, "num", "val"), n=0..17);
MATHEMATICA
P[n_, x_] := Sum[(-1)^(n-k)*StirlingS2[n, k]*k!*x^k, {k, 0, n}];
a[n_] := Integrate[P[n, x]^3, {x, 0, 1}] // Numerator;
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jun 15 2019 *)
CROSSREFS
Sequence in context: A272797 A046733 A357312 * A278345 A277866 A278594
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Aug 24 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 15:24 EDT 2024. Contains 372664 sequences. (Running on oeis4.)