The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291449 Numerators of Integral_{x=0..1} P(n, x)^3 with P(n, x) = Sum_{k=0..n} (-1)^(n-k)* Stirling2(n, k)*k!*x^k. 6
 1, 1, 13, 1, 43, -61, 728877, 81739, -1779449713, -2112052153, 730622680308569, 113221320488699, -3660430816956396309, -3021604582205161, 21842539561810574341396283, 66747470298418575790593659, -124586733960451680357554181608419, -28471605423890788373026535240299 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Consider a family of integrals I(m, n) = Integral_{x=0..1} P(n, x)^m with P(n, x) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*k!*x^k. I(1, n) are the Bernoulli numbers A164555/A027642, I(2, n) are the Bernoulli median numbers A212196/A181131, I(3, n) are the numbers A291449/A291450. The coefficients of the polynomials P(n, x)^m are for m = 1 A290694/A290695, for m = 2 A291447/A291448. (See A290694 for further comments.) LINKS Table of n, a(n) for n=0..17. MAPLE # Function BG_row is defined in A290694. seq(BG_row(3, n, "num", "val"), n=0..17); MATHEMATICA P[n_, x_] := Sum[(-1)^(n-k)*StirlingS2[n, k]*k!*x^k, {k, 0, n}]; a[n_] := Integrate[P[n, x]^3, {x, 0, 1}] // Numerator; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jun 15 2019 *) CROSSREFS Cf. A164555/A027642, A212196/A181131, A291449/A291450, A290694/A290695, A291447/A291448. Sequence in context: A272797 A046733 A357312 * A278345 A277866 A278594 Adjacent sequences: A291446 A291447 A291448 * A291450 A291451 A291452 KEYWORD sign,frac AUTHOR Peter Luschny, Aug 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 15:24 EDT 2024. Contains 372664 sequences. (Running on oeis4.)