login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squarefree triprimes of the form p*q*r such that p + q + r + 1 is prime.
1

%I #10 Aug 29 2017 21:52:53

%S 30,42,66,78,102,110,138,182,186,222,230,246,266,282,290,318,366,374,

%T 402,434,438,498,506,518,530,582,590,602,606,618,638,642,710,782,786,

%U 806,854,890,906,942,962,1002,1010,1022,1034,1038,1106,1118,1146,1158,1166,1178,1298

%N Squarefree triprimes of the form p*q*r such that p + q + r + 1 is prime.

%C All terms are even. - _Muniru A Asiru_, Aug 29 2017

%H Charles R Greathouse IV, <a href="/A291446/b291446.txt">Table of n, a(n) for n = 1..10000</a>

%e 42 = 2*3*7 and 2 + 3 + 7 + 1 is prime, so 42 is a term.

%e 402 = 2*3*67 and 2 + 3 + 67 + 1 is prime, so 402 is a term.

%t With[{nnn=80}, Take[Times@@@Select[Subsets[Prime[Range[nnn]], {3}], PrimeQ[Total[#] + 1] &]//Union, nnn]]

%o (GAP)

%o A291446:=List(Filtered(Filtered(List(Filtered(List([1..10^6],Factors),i->Length(i)=3),Set),j->Length(j)=3),i->IsPrime(Sum(i)+1)),Product); # _Muniru A Asiru_, Aug 29 2017

%o (PARI) list(lim)=my(v=List()); forprime(p=5, lim\6, forprime(q=3, min(lim\(2*p),p-2), if(isprime(p+q+3), listput(v, 2*p*q)))); Set(v) \\ _Charles R Greathouse IV_, Aug 29 2017

%Y Subsequence of A075819, and hence of A007304.

%Y Cf. A291319.

%K nonn

%O 1,1

%A _Vincenzo Librandi_, Aug 24 2017