|
|
A093981
|
|
Number of prime pairs below 10^n having a difference of 54.
|
|
2
|
|
|
0, 0, 0, 0, 4, 140, 2403, 33593, 410754, 4627165, 49484726, 511589763, 5167085638, 51359117940, 504751212449, 4920758221226, 47694473239363, 460356869024451
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
The primes must be consecutive, i.e., there must be no other primes between p and (p+54). - Harvey P. Dale, Aug 08 2011
|
|
LINKS
|
Table of n, a(n) for n=1..18.
Siegfried "Zig" Herzog, Frequency of Occurrence of Prime Gaps
T. Oliveira e Silva, S. Herzog, and S. Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18, Math. Comp., 83 (2014), 2033-2060.
|
|
EXAMPLE
|
a(6) = 140 because there are 140 prime gaps of 54 below 10^6.
|
|
MATHEMATICA
|
Table[Count[Partition[Prime[Range[PrimePi[10^i]]], 2, 1], _?(Last[#] - First[#] == 54&)], {i, 9}] (* Harvey P. Dale, Aug 08 2011 *)
|
|
CROSSREFS
|
Cf. A007508, A093980, A093982.
Sequence in context: A221675 A340838 A291450 * A055304 A270065 A002917
Adjacent sequences: A093978 A093979 A093980 * A093982 A093983 A093984
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Enoch Haga, Apr 24 2004
|
|
EXTENSIONS
|
a(10)-a(13) from Washington Bomfim, Jun 22 2012
a(14)-a(18) from S. Herzog's website added by Giovanni Resta, Aug 14 2018
|
|
STATUS
|
approved
|
|
|
|