login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the denominator of f(n, k) = (Product_{i = 0..k-1} (n-i))/(Sum_{i = 1..k} i) for 1 <= k <= n.
3

%I #19 Oct 22 2019 04:20:58

%S 1,1,3,1,1,1,1,1,1,5,1,3,1,1,1,1,1,1,1,1,7,1,1,1,1,1,1,1,1,3,1,1,1,1,

%T 1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,11,1,3,1,1,1,1,1,1,1,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,13,1,1,1,1,1,7,1,1,1,1,1,1,1,1,3,1,5,1,1,1,1,1,1,1,1,1,1

%N Triangle read by rows: T(n,k) is the denominator of f(n, k) = (Product_{i = 0..k-1} (n-i))/(Sum_{i = 1..k} i) for 1 <= k <= n.

%F T(n,n) = denominator(f(n, n)) = denominator(2*(n-1)!/(n+1)).

%e Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:

%e 1;

%e 1, 3;

%e 1, 1, 1;

%e 1, 1, 1, 5;

%e 1, 3, 1, 1, 1;

%e 1, 1, 1, 1, 1, 7;

%e 1, 1, 1, 1, 1, 1, 1;

%e 1, 3, 1, 1, 1, 1, 1, 1;

%e 1, 1, 1, 5, 1, 1, 1, 1, 1;

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 11;

%e ...

%Y Cf. A090585, A090586, A093415, A093420 (numerators), A093423.

%K nonn,easy,frac,tabl,less

%O 1,3

%A _Amarnath Murthy_, Mar 30 2004

%E Edited and extended by _David Wasserman_, Aug 29 2006