OFFSET
1,2
COMMENTS
This sequence is a permutation of A025487.
And thus also a permutation of A181812, see the formula section. - Antti Karttunen, Jul 21 2014
A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..2370 (terms 1..256 from Antti Karttunen)
FORMULA
Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...
Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [Franklin T. Adams-Watters, Jun 24 2009; typos corrected by Antti Karttunen, Jul 21 2014]
From Antti Karttunen, Jul 21 2014: (Start)
a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).
a(n) = n * A181811(n).
Other identities:
a(2^n) = 2^n. [Fixes the powers of two.]
A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]
(End)
From Antti Karttunen, Nov 19 2019: (Start)
Further identities:
(End)
From Antti Karttunen, Jul 09 2021: (Start)
(End)
Sum_{n>=1} 1/a(n) = A161360. - Amiram Eldar, Aug 04 2022
EXAMPLE
a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24
a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).
MATHEMATICA
a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *)
Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library for memoizing definec-macro)
;; Antti Karttunen, Jul 21 2014
(Sage)
def sharp_primorial(n): return sloane.A002110(prime_pi(n))
def p(f):
return sharp_primorial(f[0])^f[1]
[prod(p(f) for f in factor(n)) for n in range (1, 51)]
# Giuseppe Coppoletta, Feb 07 2015
(PARI) primorial(n)=prod(i=1, primepi(n), prime(i))
a(n)=my(f=factor(n)); prod(i=1, #f~, primorial(f[i, 1])^f[i, 2]) \\ Charles R Greathouse IV, Jun 28 2015
(Python)
from sympy import primerange, factorint
from operator import mul
def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
def a(n):
f = factorint(n)
return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017
CROSSREFS
Cf. A034386, A002110, A025487, A048673, A064216, A064989, A085082, A122111, A124859, A161360, A181811, A181812, A181814, A181815, A181817, A181819, A181822, A238690, A283477, A283478, A307035, A324886, A324887, A324888, A324896, A325226, A329040, A329046, A329047, A329344, A329348, A329349, A329378, A329382, A329600, A329602, A329605, A329607, A329615, A329616, A329617, A329619, A329622, A319627, A329647, A331292, A337474, A346108, A346109, A344698, A344699.
KEYWORD
mult,easy,nonn
AUTHOR
Paul Boddington, Jul 21 2005
EXTENSIONS
More terms computed by Antti Karttunen, Jul 21 2014
The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015
Name "Primorial inflation" (coined by Matthew Vandermast in A181815) prefixed to the name by Antti Karttunen, Jan 14 2020
STATUS
approved