The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307035 a(n) is the unique integer k such that A108951(k) = n!. 6
 1, 1, 2, 3, 12, 20, 60, 84, 672, 1512, 5040, 7920, 47520, 56160, 157248, 393120, 6289920, 8225280, 37013760, 41368320, 275788800, 579156480, 1820206080, 2203407360, 26440888320, 73446912000, 173601792000, 585906048000, 3281073868800, 4137006182400, 20685030912000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For all n, n! = A108951(k) for some unique k. This sequence gives that k for each n. In some sense this sequence tells how to factor factorials into primorials. Represent n! as a product of primorials p#. Then replace each primorial with its base prime to calculate a(n). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1911 (terms n = 1..1000 from Vaclav Kotesovec) FORMULA a(0) = 1, a(n) = a(n-1) * (A319626(n) / A319627(n)), for n > 0. - Daniel Suteu, Mar 21 2019 a(n) = n! / Product_{k=1..n} A064989(k). - Vaclav Kotesovec, Mar 21 2019 a(n) = A122111(A325508(n)) = A319626(A000142(n)) = A329900(A000142(n)). - Antti Karttunen, Nov 19 & Dec 29 2019 EXAMPLE Represent 7! as a product of primorials: 7! = 2^4 * 3^2 * 5 * 7 = (2#)^2 * 3# * 7# Replace primorials by primes: 2^2 * 3 * 7 = 84. So a(7) = 84. MAPLE f:= proc(n) option remember; `if`(n<2, 0, f(n-1)+add(       i[2]*x^numtheory[pi](i[1]), i=ifactors(n)[2]))     end: a:= proc(n) local d, p, r; p, r:= f(n), 1;       do d:= degree(p); if d<1 then break fi;          p, r:= p-add(x^i, i=1..d), ithprime(d)*r       od: r     end: seq(a(n), n=0..35);  # Alois P. Heinz, Mar 21 2019 MATHEMATICA q[n_] := Apply[Times, Table[Prime[i], {i, 1, PrimePi[n]}]]; Flatten[{1, 1, Table[val = 1; fak = n!; Do[If[PrimeQ[k], Do[If[Divisible[fak, q[k]], val = val*k; fak = fak/q[k]], {j, 1, n}]], {k, n, 2, -1}]; val, {n, 2, 30}]}] (* Vaclav Kotesovec, Mar 21 2019 *) PROG (PARI) g(n) = my(f=factor(n)); prod(k=1, #f~, my(p=f[k, 1]); (p/if(p>2, precprime(p-1), 1))^f[k, 2]); \\ A319626/A319627 a(n) = prod(k=1, n, g(k)); \\ Daniel Suteu, Mar 21 2019 (PARI) A307035(n) = { my(m=1, pp=1); n=n!; while(1, forprime(p=2, , if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); }; \\ Antti Karttunen, Dec 29 2019 CROSSREFS Cf. A000142, A108951, A025487, A122111, A319626, A319627, A325508, A329900. Sequence in context: A281086 A130089 A323119 * A319404 A126292 A083265 Adjacent sequences:  A307032 A307033 A307034 * A307036 A307037 A307038 KEYWORD nonn,easy AUTHOR Allan C. Wechsler, Mar 20 2019 EXTENSIONS a(12)-a(13) from Michel Marcus, Mar 21 2019 a(14)-a(15) from Vaclav Kotesovec, Mar 21 2019 a(0), a(16)-a(30) from Alois P. Heinz, Mar 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 09:52 EDT 2021. Contains 343110 sequences. (Running on oeis4.)