login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181821 a(n) = smallest integer with factorization as Product p(i)^e(i) such that Product p(e(i)) = n. 87
1, 2, 4, 6, 8, 12, 16, 30, 36, 24, 32, 60, 64, 48, 72, 210, 128, 180, 256, 120, 144, 96, 512, 420, 216, 192, 900, 240, 1024, 360, 2048, 2310, 288, 384, 432, 1260, 4096, 768, 576, 840, 8192, 720, 16384, 480, 1800, 1536, 32768, 4620, 1296, 1080, 1152, 960, 65536 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A permutation of A025487. a(n) is the member m of A025487 such that A181819(m) = n. a(n) is also the member of A025487 whose prime signature is conjugate to the prime signature of A108951(n).

If n = Product_i prime(e(i)) with the e(i) weakly decreasing, then a(n) = Product_i prime(i)^e(i). For example, 90 = prime(3) * prime(2) * prime(2) * prime(1), so a(90) = prime(1)^3 * prime(2)^2 * prime(3)^2 * prime(4)^1 = 12600. - Gus Wiseman, Jan 02 2019

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Conjugate Partition

FORMULA

If A108951(n) = Product p(i)^e(i), then a(n) = Product A002110(e(i)). I.e., a(n) = A108951(A181819(A108951(n))).

a(A181819(n)) = A046523(n)). - Antti Karttunen, Dec 10 2018

EXAMPLE

The canonical factorization of 24 is 2^3*3^1.  Therefore, p(e(i)) = prime(3)*prime(1)(i.e., A000040(3)*A000040(1)), which equals 5*2 = 10.  Since 24 is the smallest integer for which p(e(i)) = 10, a(10) = 24.

MAPLE

a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(sort(map(i->

             numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):

seq(a(n), n=1..70);  # Alois P. Heinz, Sep 05 2018

MATHEMATICA

With[{s = Array[If[# == 1, 1, Times @@ Map[Prime@ Last@ # &, FactorInteger@ #]] &, 2^16]}, Array[First@ FirstPosition[s, #] &, LengthWhile[Differences@ Union@ s, # == 1 &]]] (* Michael De Vlieger, Dec 17 2018 *)

Table[Times@@MapIndexed[Prime[#2[[1]]]^#1&, Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]], {n, 30}] (* Gus Wiseman, Jan 02 2019 *)

PROG

(PARI) A181821(n) = { my(f=factor(n), p=0, m=1); forstep(i=#f~, 1, -1, while(f[i, 2], f[i, 2]--; m *= (p=nextprime(p+1))^primepi(f[i, 1]))); (m); }; \\ Antti Karttunen, Dec 10 2018

CROSSREFS

Other rearrangements of A025487 include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181822.

Cf. A046523, A181819, A181820.

Cf. A001221, A001222, A056239, A071625, A112798, A118914, A182850, A305936.

Sequence in context: A131117 A332290 A332293 * A241882 A238626 A168657

Adjacent sequences:  A181818 A181819 A181820 * A181822 A181823 A181824

KEYWORD

nonn

AUTHOR

Matthew Vandermast, Dec 07 2010

EXTENSIONS

Definition corrected by Gus Wiseman, Jan 02 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 04:53 EST 2021. Contains 340301 sequences. (Running on oeis4.)