login
A329378
Least common multiple of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).
5
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 6, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 6, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 2, 6, 2, 3, 1, 12, 2, 4, 2, 2, 1, 4, 1, 2, 3, 6, 2, 6, 1, 3, 2, 6, 1, 10, 1, 2, 6, 3, 2, 6, 1, 5, 4, 2, 1, 4, 2, 2, 2, 4, 1, 12, 2, 3, 2, 2, 2, 6, 1, 6, 3, 4, 1, 6, 1, 4, 6
OFFSET
1,4
FORMULA
a(n) = A072411(A108951(n)) = A072411(A329600(n)).
a(n) <= A329617(n) <= A329382(n) <= A329605(n).
a(A019565(n)) = A284002(n).
PROG
(PARI)
A034386(n) = prod(i=1, primepi(n), prime(i));
A072411(n) = lcm(factor(n)[, 2]); \\ From A072411
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
CROSSREFS
Differs from related A329617 for the first time at n=36.
Sequence in context: A098893 A302037 A069248 * A329617 A008481 A318473
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 17 2019
STATUS
approved