login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071178 Exponent of the largest prime factor of n. 30
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

a(n) = A067255(n,A001222(n)). - Reinhard Zumkeller, Jun 11 2013

a(n) = the multiplicity of the largest part in the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(18) = 2; indeed, the partition having Heinz number 18 = 2*3*3 is [1,2,2]. - Emeric Deutsch, Jun 04 2015

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A124010(n, A001221(n)); A053585(n) = A006530(n)^a(n). [Reinhard Zumkeller, Aug 27 2011]

MAPLE

with(numtheory): with(padic):

a:= n-> `if`(n=1, 0, ordp(n, max(factorset(n)[]))):

seq(a(n), n=1..120);  # Alois P. Heinz, Jun 04 2015

MATHEMATICA

a[n_] := FactorInteger[n] // Last // Last; Table[a[n], {n, 1, 120}] (* Jean-Fran├žois Alcover, Jun 12 2015 *)

PROG

(Haskell)

a071178 = last . a124010_row -- Reinhard Zumkeller, Aug 27 2011

CROSSREFS

Cf. A067029, A215366.

Sequence in context: A052409 A051904 A070012 * A072776 A077481 A278113

Adjacent sequences:  A071175 A071176 A071177 * A071179 A071180 A071181

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Jun 10 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 09:07 EST 2018. Contains 318053 sequences. (Running on oeis4.)