login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283477 If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek). 37
1, 2, 6, 12, 30, 60, 180, 360, 210, 420, 1260, 2520, 6300, 12600, 37800, 75600, 2310, 4620, 13860, 27720, 69300, 138600, 415800, 831600, 485100, 970200, 2910600, 5821200, 14553000, 29106000, 87318000, 174636000, 30030, 60060, 180180, 360360, 900900, 1801800, 5405400, 10810800, 6306300, 12612600, 37837800, 75675600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = Product of distinct primorials larger than one, obtained as Product_{i} A002110(1+i), where i ranges over the zero-based positions of the 1-bits present in the binary representation of n.

This sequence can be represented as a binary tree. Each child to the left is obtained as A283980(k), and each child to the right is obtained as 2*A283980(k), when their parent contains k:

                                      1

                                      |

                   ...................2....................

                  6                                       12

       30......../ \........60                 180......../ \......360

       / \                 / \                 / \                 / \

      /   \               /   \               /   \               /   \

     /     \             /     \             /     \             /     \

  210       420      1260       2520     6300       12600   37800       75600

etc.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..4095

Index entries for sequences related to binary expansion of n

Index entries for sequences related to primorial numbers

FORMULA

a(0) = 1; a(2n) = A283980(a(n)), a(2n+1) = 2*A283980(a(n)).

Other identities. For all n >= 0 (or for n >= 1):

a(2n+1) = 2*a(2n).

a(n) = A108951(A019565(n)).

A097248(a(n)) = A283475(n).

A007814(a(n)) = A051903(a(n)) = A000120(n).

A001221(a(n)) = A070939(n).

A001222(a(n)) = A029931(n).

A048675(a(n)) = A005187(n).

A248663(a(n)) = A006068(n).

A090880(a(n)) = A283483(n).

A276075(a(n)) = A283984(n).

A276085(a(n)) = A283985(n).

A046660(a(n)) = A124757(n).

A056169(a(n)) = A065120(n). [seems to be]

A005361(a(n)) = A284001(n).

A072411(a(n)) = A284002(n).

A007913(a(n)) = A284003(n).

A000005(a(n)) = A284005(n).

A324286(a(n)) = A324287(n).

A276086(a(n)) = A324289(n).

A267263(a(n)) = A324341(n).

A276150(a(n)) = A324342(n). [subsequences in the latter are converging towards this sequence]

G.f.: Product_{k>=0} (1 + prime(k + 1)# * x^(2^k)), where prime()# = A002110. - Ilya Gutkovskiy, Aug 19 2019

MATHEMATICA

Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 43}] (* Michael De Vlieger, Mar 18 2017 *)

PROG

(PARI) A283477(n) = prod(i=0, exponent(n), if(bittest(n, i), vecprod(primes(1+i)), 1)) \\ Edited by M. F. Hasler, Nov 11 2019

(Scheme)

(define (A283477 n) (A108951 (A019565 n)))

;; Recursive "binary tree" implementation, using memoization-macro definec:

(definec (A283477 n) (cond ((zero? n) 1) ((even? n) (A283980 (A283477 (/ n 2)))) (else (* 2 (A283980 (A283477 (/ (- n 1) 2)))))))

(Python)

from sympy import prime, primerange, factorint

from operator import mul

from functools import reduce

def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])

def a108951(n):

    f = factorint(n)

    return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])

def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after Chai Wah Wu

def a(n): return a108951(a019565(n))

print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017

CROSSREFS

Cf. A129912 (same terms, but sorted into ascending order).

Cf. A000120, A001221, A001222, A002110, A005187, A005361, A006068, A007814, A007913, A019565, A029931, A030308, A046660, A048675, A051903, A056169, A065120, A070939, A072411, A090880, A097248, A108951, A124757, A248663, A276075, A276085, A283475, A283483, A283980, A283984, A283985, A284001, A284002, A284003, A284005, A324287, A324289, A324341, A324342, A324343.

Cf. A005940, A052330, A322827, A323505 for other similar trees.

Cf. also A260443.

Sequence in context: A100071 A331552 A129912 * A182863 A161507 A335711

Adjacent sequences:  A283474 A283475 A283476 * A283478 A283479 A283480

KEYWORD

nonn

AUTHOR

Antti Karttunen, Mar 16 2017

EXTENSIONS

More formulas and the binary tree illustration added by Antti Karttunen, Mar 19 2017

Four more linking formulas added by Antti Karttunen, Feb 25 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 2 11:54 EDT 2020. Contains 335398 sequences. (Running on oeis4.)