login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124859 Multiplicative with p^e -> primorial(e), p prime and e > 0. 8
1, 2, 2, 6, 2, 4, 2, 30, 6, 4, 2, 12, 2, 4, 4, 210, 2, 12, 2, 12, 4, 4, 2, 60, 6, 4, 30, 12, 2, 8, 2, 2310, 4, 4, 4, 36, 2, 4, 4, 60, 2, 8, 2, 12, 12, 4, 2, 420, 6, 12, 4, 12, 2, 60, 4, 60, 4, 4, 2, 24, 2, 4, 12, 30030, 4, 8, 2, 12, 4, 8, 2, 180, 2, 4, 12, 12, 4, 8, 2, 420, 210, 4, 2, 24, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Indranil Ghosh, Table of n, a(n) for n = 1..5000 (first 1000 terms from R. Zumkeller)

Eric Weisstein's World of Mathematics, Prime Factorization

Eric Weisstein's World of Mathematics, Primorial

Index entries for sequences computed from exponents in factorization of n

FORMULA

a(A000040(x)^n) = A002110(n); a(A002110(n)) = A000079(n);

a(A005117(n)) = 2^A001221(A005117(n)) = A072048(n);

A001221(a(n)) = A051903(n); A001222(a(n)) = A001222(n).

From Antti Karttunen, Mar 06 2017: (Start)

a(1) = 1, for n > 1, a(n) = A002110(A067029(n)) * a(A028234(n)).

a(n) = A278159(A156552(n)).

a(A278159(n)) = A278222(n).

a(a(n)) = A046523(n). [after Matthew Vandermast's May 19 2012 formula for the latter sequence]

A181819(a(n)) = A238745(n). [after Matthew Vandermast's formula for the latter sequence]

(End)

EXAMPLE

From Michael De Vlieger, Mar 06 2017: (Start)

a(2) = 2 since 2 = 2^1, thus primorial p_1# = 2.

a(4) = 6 since 4 = 2^2, thus primorial p_2# = 2*3 = 6.

a(6) = 4 because 6 is squarefree with omega(6)=2, thus 2^2 = 4.

a(8) = 30 since 8 = 2^3, thus primorial p_3# = 2*3*5 = 30.

a(10) = 4 since 10 is squarefree with omega(10)=2, thus 2^2 = 4.

a(12) = 12 since 12 = 2^1 * 3^2, thus primorials p_1# * p_2# = 2*6 = 12.

(End)

MAPLE

A124859 := proc(n)

    local a, pf;

    a := 1;

    for pf in ifactors(n)[2] do

        a := a*A002110(pf[2]) ;

    end do:

    a ;

end proc:

seq(A124859(n), n=1..80) ; # R. J. Mathar, Oct 06 2017

MATHEMATICA

Table[Which[n == 1, 1, SquareFreeQ@ n, 2^PrimeNu@ n, True, Times @@ Map[Times @@ Prime@ Range@ # &, #[[All, -1]]]] &@ FactorInteger@ n, {n, 86}] (* Michael De Vlieger, Mar 06 2017 *)

PROG

(PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = prod(j=1, f[k, 2], prime(j)); f[k, 2] = 1; ); factorback(f); } \\ Michel Marcus, Nov 16 2015

(Scheme) (define (A124859 n) (cond ((= 1 n) 1) (else (* (A002110 (A067029 n)) (A124859 (A028234 n)))))) ;; Antti Karttunen, Mar 06 2017

(Python)

from sympy.ntheory.factor_ import core

from sympy import factorint, primorial, primefactors

from operator import mul

def omega(n): return 0 if n==1 else len(primefactors(n))

def a(n):

    f=factorint(n)

    return n if n<3 else 2**omega(n) if core(n) == n else reduce(mul, [primorial(f[i]) for i in f]) # Indranil Ghosh, May 13 2017

CROSSREFS

Cf. A000040, A000079, A001221, A001222, A002110, A005117, A028234, A046523, A067029, A072048, A108951, A156552, A181819, A238745, A278159, A278222.

Sequence in context: A068976 A265392 A253139 * A021446 A062401 A286383

Adjacent sequences:  A124856 A124857 A124858 * A124860 A124861 A124862

KEYWORD

nonn,mult

AUTHOR

Reinhard Zumkeller, Nov 10 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 14 00:21 EST 2017. Contains 295976 sequences.