This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267115 Bitwise-AND of the exponents of primes in the prime factorization of n, a(1) = 0. 8
 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 0, 1, 1, 1, 4, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 0, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 6, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 0, 4, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA If A028234(n) = 1 [when n is a power of prime, in A000961], a(n) = A067029(n), otherwise a(n) = A067029(n) AND a(A028234(n)). [Here AND stands for bitwise-and, A004198.] EXAMPLE For n = 24 = 2^3 * 3^1, bitwise-and of 3 and 1 ("11" and "01" in binary) gives 1, thus a(24) = 1. For n = 210 = 2^1 * 3^1 * 5^1 * 7^1, bitwise-and of 1, 1, 1 and 1 gives 1, thus a(210) = 1. For n = 720 = 2^4 * 3^2 * 5^1, bitwise-and of 4, 2 and 1 ("100", "10" and "1" in binary) gives zero, thus a(720) = 0. MATHEMATICA {0}~Join~Table[BitAnd @@ Map[Last, FactorInteger@ n], {n, 2, 120}] (* Michael De Vlieger, Feb 07 2016 *) PROG (Scheme, two variants) (define (A267115 n) (let loop ((n (A028234 n)) (z (A067029 n))) (cond ((= 1 n) z) (else (loop (A028234 n) (A004198bi z (A067029 n))))))) ;; A004198bi implements bitwise-and (see A004198). ;; A recursive version using memoizing definec-macro: (definec (A267115 n) (if (= 1 (A028234 n)) (A067029 n) (A004198bi (A067029 n) (A267115 (A028234 n))))) (PARI) a(n)=my(f = factor(n)[, 2]); if (#f == 0, return (0)); my(b = f[1]); for (k=2, #f, b = bitand(b, f[k]); ); b; \\ Michel Marcus, Feb 07 2016 (PARI) a(n)=if(n>1, fold(bitand, factor(n)[, 2]), 0) \\ Charles R Greathouse IV, Aug 04 2016 CROSSREFS Cf. A000961, A004198, A028234, A067029, A267114, A267116, A268387. Cf. A002035 (indices of odd numbers), A072587 (indices of even numbers that occur after a(1)). Cf. A267117 (indices of zeros). Sequence in context: A074761 A037861 A145037 * A277647 A296134 A158052 Adjacent sequences:  A267112 A267113 A267114 * A267116 A267117 A267118 KEYWORD nonn AUTHOR Antti Karttunen, Feb 03 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 06:34 EST 2019. Contains 319207 sequences. (Running on oeis4.)