login
A329615
Bitwise-AND of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).
4
0, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 1, 1, 0, 0, 4, 1, 2, 1, 1, 0, 0, 1, 0, 2, 0, 3, 1, 1, 0, 1, 5, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 6, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 4, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 1, 0, 0
OFFSET
1,4
FORMULA
a(n) = A267115(A108951(n)) = A267115(A329600(n)).
a(n) <= A329616(n).
PROG
(PARI)
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
A267115(n) = if(n>1, fold(bitand, factor(n)[, 2]), 0); \\ From A267115
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 17 2019
STATUS
approved