This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067029 Exponent of least prime factor in prime factorization of n, a(1)=0. 120
 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Even bisection is A001511: a(2n) = A007814(n) + 1. - Ralf Stephan, Jan 31 2004 a(A247180(n)) = 1. - Reinhard Zumkeller, Nov 23 2014 Number of occurrences of the smallest part in the partition with Heinz number n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). Example: a(24)=3 because the partition with Heinz number 24 = 3*2*2*2 is [2,1,1,1]. - Emeric Deutsch, Oct 02 2015 Together with A028234 is useful for defining sequences that are multiplicative with a(p^e) = f(e), as recurrences of the form: a(1) = 1 and for n > 1, a(n) = f(A067029(n)) * a(A028234(n)). - Antti Karttunen, May 29 2017 LINKS T. D. Noe, Table of n, a(n) for n=1..10000 FORMULA a(n) = A124010(n,1). - Reinhard Zumkeller, Aug 27 2011 A028233(n) = A020639(n)^a(n). - Reinhard Zumkeller, May 13 2006 EXAMPLE a(18) = a(2^1 * 3^2) = 1. MAPLE A067029 := proc(n)     local f, lp, a;     a := 0 ;     lp := n+1 ;     for f in ifactors(n)[2] do         p := op(1, f) ;         if p < lp then             a := op(2, f) ;             lp := p;         fi;     end do:     a ; end proc: # R. J. Mathar, Jul 08 2015 MATHEMATICA Join[{0}, Table[FactorInteger[n][[1, 2]], {n, 2, 100}]] (* Harvey P. Dale, Oct 14 2011 *) PROG (Haskell) a067029 = head . a124010_row -- Reinhard Zumkeller, Jul 05 2013, Jun 04 2012 (Python) from sympy import factorint def a(n):     f=factorint(n)     return 0 if n==1 else f[min(f)] # Indranil Ghosh, May 15 2017 (PARI) a(n) = if (n==1, 0, factor(n)[1, 2]); \\ Michel Marcus, May 15 2017 (Scheme) ;; Naive implementation of A020639 is given under that entry. All of these functions could be also defined with definec to make them faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme (define (A067029 n) (if (< n 2) 0 (let ((mp (A020639 n))) (let loop ((e 0) (n (/ n mp))) (cond ((integer? n) (loop (+ e 1) (/ n mp))) (else e)))))) ;;  Antti Karttunen, May 29 2017 CROSSREFS Cf. A051903, A020639, A028233, A034684, A071178. Sequence in context: A072909 A095691 A182426 * A087179 A290109 A088388 Adjacent sequences:  A067026 A067027 A067028 * A067030 A067031 A067032 KEYWORD nonn,nice AUTHOR Reinhard Zumkeller, Feb 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.