login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061395 Let p be the largest prime factor of n; if p is the k-th prime then set a(n) = k; a(1) = 0 by convention. 84
0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 3, 1, 7, 2, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 3, 13, 4, 14, 5, 3, 9, 15, 2, 4, 3, 7, 6, 16, 2, 5, 4, 8, 10, 17, 3, 18, 11, 4, 1, 6, 5, 19, 7, 9, 4, 20, 2, 21, 12, 3, 8, 5, 6, 22, 3, 2, 13, 23, 4, 7, 14, 10, 5, 24, 3, 6, 9, 11, 15 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Records occur at the primes. - Robert G. Wilson v, Dec 30 2007.

For n > 1: length of n-th row in A067255. - Reinhard Zumkeller, Jun 11 2013

a(n) = the largest part of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(20) = 3; indeed, the partition having Heinz number 20 = 2*2*5 is [1,1,3]. - Emeric Deutsch, Jun 04 2015

LINKS

Álvar Ibeas, Table of n, a(n) for n = 1..100000 (first 1000 terms by Harry J. Smith)

Index entries for sequences computed from indices in prime factorization

FORMULA

A000040(a(n)) = A006530(n); a(n) = A049084(A006530(n)). - Reinhard Zumkeller, May 22 2003

A243055(n) = a(n) - A055396(n). - Antti Karttunen, Mar 07 2017

EXAMPLE

a(20) = 3 since the largest prime factor of 20 is 5, which is the 3rd prime.

MAPLE

with(numtheory):

a:= n-> `if`(n=1, 0, pi(max(factorset(n)[]))):

seq(a(n), n=1..100);  # Alois P. Heinz, Aug 03 2013

MATHEMATICA

Insert[Table[PrimePi[FactorInteger[n][[ -1]][[1]]], {n, 2, 120}], 0, 1] (* Stefan Steinerberger, Apr 11 2006 *)

f[n_] := PrimePi[ FactorInteger@n][[ -1, 1]]; Array[f, 94] (* Robert G. Wilson v, Dec 30 2007 *)

PROG

(PARI) { for (n=1, 1000, if (n==1, a=0, f=factor(n)~; p=f[1, length(f)]; a=primepi(p)); write("b061395.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 22 2009

(Haskell)

a061395 = a049084 . a006530  -- Reinhard Zumkeller, Jun 11 2013

(Python)

from sympy import primepi, primefactors

def a(n): return 0 if n==1 else primepi(primefactors(n)[-1])

print [a(n) for n in xrange(1, 101)] # Indranil Ghosh, May 14 2017

CROSSREFS

Cf. A006530, A055396, A061394, A133674, A243055.

Sequence in context: A277564 A108230 A253558 * A290103 A156061 A225395

Adjacent sequences:  A061392 A061393 A061394 * A061396 A061397 A061398

KEYWORD

easy,nice,nonn

AUTHOR

Henry Bottomley, Apr 30 2001

EXTENSIONS

Definition reworded by N. J. A. Sloane, Jul 01 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 16:37 EST 2017. Contains 295942 sequences.