login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061395 Let p be the largest prime factor of n; if p is the k-th prime then set a(n) = k; a(1) = 0 by convention. 89
0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 3, 1, 7, 2, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 3, 13, 4, 14, 5, 3, 9, 15, 2, 4, 3, 7, 6, 16, 2, 5, 4, 8, 10, 17, 3, 18, 11, 4, 1, 6, 5, 19, 7, 9, 4, 20, 2, 21, 12, 3, 8, 5, 6, 22, 3, 2, 13, 23, 4, 7, 14, 10, 5, 24, 3, 6, 9, 11, 15 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Records occur at the primes. - Robert G. Wilson v, Dec 30 2007.

For n > 1: length of n-th row in A067255. - Reinhard Zumkeller, Jun 11 2013

a(n) = the largest part of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(20) = 3; indeed, the partition having Heinz number 20 = 2*2*5 is [1,1,3]. - Emeric Deutsch, Jun 04 2015

LINKS

Álvar Ibeas, Table of n, a(n) for n = 1..100000 (first 1000 terms from Harry J. Smith)

Index entries for sequences computed from indices in prime factorization

FORMULA

A000040(a(n)) = A006530(n); a(n) = A049084(A006530(n)). - Reinhard Zumkeller, May 22 2003

A243055(n) = a(n) - A055396(n). - Antti Karttunen, Mar 07 2017

EXAMPLE

a(20) = 3 since the largest prime factor of 20 is 5, which is the 3rd prime.

MAPLE

with(numtheory):

a:= n-> `if`(n=1, 0, pi(max(factorset(n)[]))):

seq(a(n), n=1..100);  # Alois P. Heinz, Aug 03 2013

MATHEMATICA

Insert[Table[PrimePi[FactorInteger[n][[ -1]][[1]]], {n, 2, 120}], 0, 1] (* Stefan Steinerberger, Apr 11 2006 *)

f[n_] := PrimePi[ FactorInteger@n][[ -1, 1]]; Array[f, 94] (* Robert G. Wilson v, Dec 30 2007 *)

PROG

(PARI) { for (n=1, 1000, if (n==1, a=0, f=factor(n)~; p=f[1, length(f)]; a=primepi(p)); write("b061395.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 22 2009

(Haskell)

a061395 = a049084 . a006530  -- Reinhard Zumkeller, Jun 11 2013

(Python)

from sympy import primepi, primefactors

def a(n): return 0 if n==1 else primepi(primefactors(n)[-1])

print [a(n) for n in xrange(1, 101)] # Indranil Ghosh, May 14 2017

CROSSREFS

Cf. A006530, A055396, A061394, A133674, A243055.

Sequence in context: A277564 A108230 A253558 * A290103 A156061 A225395

Adjacent sequences:  A061392 A061393 A061394 * A061396 A061397 A061398

KEYWORD

easy,nice,nonn

AUTHOR

Henry Bottomley, Apr 30 2001

EXTENSIONS

Definition reworded by N. J. A. Sloane, Jul 01 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 08:33 EST 2018. Contains 299377 sequences. (Running on oeis4.)