login
A329040
Number of distinct primorials in the greedy sum of primorials adding to A108951(n).
14
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 2, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 3, 2, 3, 1, 1, 1, 1, 3
OFFSET
1,8
COMMENTS
The greedy sum is also the sum with the minimal number of primorials used in the primorial base representation.
FORMULA
a(n) = A001221(A324886(n)).
a(n) = A267263(A108951(n)).
a(n) <= A324888(n).
EXAMPLE
For n = 18 = 2 * 3^2, A108951(18) = A034386(2) * A034386(3)^2 = 2 * 6^2 = 72 = 2*A002110(3) + 2*A002110(2) = 2*30 + 2*6, and because there occurs only two distinct primorials (30 and 6) in the sum, we have a(18) = 2.
PROG
(PARI)
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A329040(n) = omega(A324886(n));
CROSSREFS
Cf. also A329045, A329046.
Sequence in context: A025453 A377384 A094215 * A296978 A236000 A114139
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 11 2019
STATUS
approved